函数知识梳理.doc_第1页
函数知识梳理.doc_第2页
函数知识梳理.doc_第3页
函数知识梳理.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第 4 页 共 4 页 高中函数知识梳理一、函数的单调性函数的单调性函数的单调性反映了函数图像的走势,高考中常考其一下作用:比较大小,解不等式,求最值。定义:定理1:那么上是增函数;上是减函数.定理2:(导数法确定单调区间) 若,那么上是增函数; 上是减函数.1.函数单调性的判断(证明)(1)作差法(定义法) (2)作商法 (3)导数法求单调区间: 导数法逆用:2.复合函数的单调性的判定对于函数和,如果函数在区间上具有单调性,当时,且函数在区间上也具有单调性,则复合函数在区间具有单调性。3.由单调函数的四则运算所得到的函数的单调性的判断对于两个单调函数和,若它们的定义域分别为和,且:(1)当和具有相同的增减性时,的增减性与相同,、的增减性不能确定;(2)当和具有相异的增减性时,我们假设为增函数,为减函数,那么:的增减性不能确定;、为增函数,为减函数。4.奇偶函数的单调性奇函数在其定义域内的对称区间上的单调性相同,偶函数在其定义域内的对称区间上的单调性相反。二、函数的对称性函数的对称性是函数的一个基本性质, 对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能够更简捷的使问题得到解决,对称关系同时还充分体现数学之美。1.函数的图象的对称性(自身):定理1: 函数的图象关于直对称特殊的有:函数的图象关于直线对称。函数是偶函数关于对称。定理2: 函数的图象关于点对称。函数是奇函数关于点 对称。定理3:(性质)若函数y=f (x)的图像有两条铅直对称轴x=a和x=b(a不等于b),那么f(x)为周期函数且2|a-b|是它的一个周期。若函数y=f (x)的图像有一个对称中心M(m.n)和一条铅直对称轴x=a,那么f(x)为周期函数且4|a-m|为它的一个周期。若一个函数的反函数是它本身,那么它的图像关于直线y=x对称。2.两个函数图象的对称性:函数与函数的图象关于直线(即轴)对称.A(x,y)关于x轴的对称点为( );A(x,y)关于y轴的对称点为( );A(x,y)关于原点的对称点为( );A(x,y)关于y=x的对称点为( );A(x,y)关于y=-x的对称点为( );函数y = f (x)的图像与x = f (y)的图像关于直线x = y 成轴对称。3奇偶函数性质对于两个具有奇偶性的函数和,若它们的定义域分别为和,且:简单地说:奇函数奇函数=奇函数, 偶函数偶函数=偶函数, 奇函数奇函数=偶函数, 偶函数偶函数=偶函数, 奇函数偶函数=奇函数. (1)满足定义式子(偶)(奇)(2)在原点有定义的奇函数有(6)任意函数均可表示成一个奇函数与一个偶函数的和。(7)一般的奇函数都具有反函数,且依然是奇函数,偶函数没有反函数(8)图形的对称性 关于轴对称的函数(偶函数)关于原点对称的函数(奇函数)(9)若是偶函数,则必有 若是奇函数,则必有(10)若为偶函数,则必有 若是奇函数,则必有(11)常见的奇偶函数三、函数的周期性函数的周期性反映了函数的重复性,在试题中它的主要用途是将大值化小,负值化正,求值。1.周期性的定义对于函数,如果存在一个非零常数,使得当取定义域内的每一个值时,都有都成立,那么就把函数叫做周期函数,非零常数叫做这个函数的周期。如果所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小正周期。如果非零常数是函数的周期,那么、()也是函数的周期。2. 函数的周期性的主要结论:结论1:如果(),那么是周期函数,其中一个周期结论2:如果(),那么是周期函数,其中一个周期结论3:如果定义在上的函数有两条对称轴、对称,那么是周期函数,其中一个周期结论4:如果偶函数的图像关于直线()对称,那么是周期函数,其中一个周期结论5:如果奇函数的图像关于直线()对称,那么是周期函数,其中一个周期结论6:如果或,那么是周期函数,其中一个周期 结论7: 如果,那么是周期函数,其中一个周期四反函数的性质和应用(1)定义域值域相反 (2)图象关于对称 (3)具有相同的单调性、奇偶性(4)单调函数一定具有反函数,具有反函数的函数不一定单调,偶函数和周期函数一定不具有反函数 (5)原函数过则反函数过反之亦然即.函数的对称性求解析式已知是偶函数,当时,,求的解析式.五多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.六分数指数幂 (1)(,且).(2)(,且).根式的性质(1).(2)当为奇数时,;当为偶数时,.八有理指数幂的运算性质(1).(2).(3).注:若a0,p是一个无理数,则ap表示一个确定的实数上述有理指数幂的运算性质,对于无理数指数幂都适用.九指数式与对数式的互化式.十.对数公式:1.对数的换底

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论