




免费预览已结束,剩余12页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省平凉市华亭二中2015-2016学年八年级数学上学期期中试题一、选择题(每题3分,共30分)1一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是()a3cmb4cmc7cmd11cm2下列长度的三条线段能组成三角形的是()a3,4,8b5,6,11c1,2,3d5,6,103如图,已知bd是abc的中线,ab=5,bc=3,abd和bcd的周长的差是()a2b3c6d不能确定4如图,图中共有三角形()a4个b5个c6个d8个5王师傅用4根木条钉成一个四边形木架,如图要使这个木架不变形,他至少还要再钉上几根木条?()a0根b1根c2根d3根6如果一个多边形的内角和等于它的外角和,则这个多边形是()a三角形b四边形c五边形d六边形7如图,已知a=d,1=2,那么要得到abcdef,还应给出的条件是()ae=bbed=bccab=efdaf=cd8如图,在abc中,ab=ac,adbc,垂足为d,且bc=6cm,则bd=()a1cmb2cmc3cmd4cm9如图,abcdcb,若a=80,acb=40,则bcd等于()a80b60c40d2010如图,将三角板的直角顶点放在直角尺的一边上,1=30,2=50,则3的度数为()a80b50c30d20二、填空题(每题3分,共30分)11abc和abc中,已知a=b,ab=bc,增加条件可使abcbca(asa)12若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为13在abc中,若a=80,c=20,则b=;若a=80,b=c,则c=14已知abc的三个内角的度数之比a:b:c=1:3:5,则b=度,c=度15五边形的对角线共有条,它的内角和为度16如图所示,已知ab=ac,在abd与acd中,要使abdacd,还需要再添加一个条件是17如图abdcdb,若ab=4,ad=5,bd=6,则bc=,cd=18如图,在abc中,a=45,b=60,则外角acd=度19已知abcdef,且a=90,ab=6,ac=8,bc=10,def中最大边长是,最大角是度20若一个多边形的每个外角都为40,则它的边数是三.解答题(共60分)21一个三角形有两条边相等,周长为20cm,三角形的一边长6cm,求其他两边长22如图,abcd,bc与ad相交于点m,n是射线cd上的一点若b=65,mdn=135,求:amb的度数23如图,ce=cb,cd=ca,dca=ecb,求证:de=ab24已知:ab=cd,abdc,求证:abccda25如图,aebc,dfbc,e,f是垂足,且ae=df,ab=dc,求证:abc=dcb26如图,已知ac=fe,bc=de,点a、d、b、f在一条直线上,ad=fb求证:abcfde27已知:点d在ab上,点e在ac上,beac,cdab,ab=ac,求证:b=c28如图,点b、f、c、e在同一条直线上,点a、d在直线be的两侧,abde,bf=ce,ab=de,(1)求证:abcdef (2)求证:ac=df29在abc中ab=ac,ac上的中线bd把三角形的周长分为12和18的两个部分,求三角形的三边长2015-2016学年甘肃省平凉市华亭二中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是()a3cmb4cmc7cmd11cm【考点】三角形三边关系 【分析】首先设第三边长为xcm,根据三角形的三边关系可得73x7+3,再解不等式即可【解答】解:设第三边长为xcm,根据三角形的三边关系可得:73x7+3,解得:4x10,故答案为:c,【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和2下列长度的三条线段能组成三角形的是()a3,4,8b5,6,11c1,2,3d5,6,10【考点】三角形三边关系 【分析】根据三角形的三边关系进行分析判断【解答】解:根据三角形任意两边的和大于第三边,得a中,3+4=78,不能组成三角形;b中,5+6=11,不能组成三角形;c中,1+2=3,不能够组成三角形;d中,5+6=1110,能组成三角形故选d【点评】本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形3如图,已知bd是abc的中线,ab=5,bc=3,abd和bcd的周长的差是()a2b3c6d不能确定【考点】三角形的角平分线、中线和高 【专题】计算题【分析】根据三角形的中线得出ad=cd,根据三角形的周长求出即可【解答】解:bd是abc的中线,ad=cd,abd和bcd的周长的差是:(ab+bd+ad)(bc+bd+cd)=abbc=53=2故选a【点评】本题主要考查对三角形的中线的理解和掌握,能正确地进行计算是解此题的关键4如图,图中共有三角形()a4个b5个c6个d8个【考点】三角形 【分析】根据三角形的定义,让不在同一条直线上的三个点组合即可找的时候要有顺序共有abc,abe,acd,bcf,bcd,bce,bfd,cfe8个三角形【解答】解:图中三角形有:abc,abe,acd,bcf,bcd,bce,bfd,cfe,共8个三角形故选d【点评】本题考查了三角形,注意找的时候要有顺序,也可从小到大找5王师傅用4根木条钉成一个四边形木架,如图要使这个木架不变形,他至少还要再钉上几根木条?()a0根b1根c2根d3根【考点】三角形的稳定性 【专题】存在型【分析】根据三角形的稳定性进行解答即可【解答】解:加上ac后,原不稳定的四边形abcd中具有了稳定的acd及abc,故这种做法根据的是三角形的稳定性故选:b【点评】本题考查的是三角形的稳定性在实际生活中的应用,比较简单6如果一个多边形的内角和等于它的外角和,则这个多边形是()a三角形b四边形c五边形d六边形【考点】多边形内角与外角 【分析】利用多边形的外角和以及四边形的内角和定理即可解决问题【解答】解:多边形的内角和等于它的外角和,多边形的外角和是360,内角和是360,这个多边形是四边形故选:b【点评】本题考查了多边形的外角和定理以及四边形的内角和定理,解题的关键是利用多边形的内角和公式并熟悉多边形的外角和为3607如图,已知a=d,1=2,那么要得到abcdef,还应给出的条件是()ae=bbed=bccab=efdaf=cd【考点】全等三角形的判定 【分析】判定abcdef已经具备的条件是a=d,1=2,再加上两角的夹边对应相等,就可以利用asa来判定三角形全等【解答】解:af=cdac=df又a=d,1=2abcdefac=df,af=cd故选d【点评】本题考查了全等三角形的判定;判定三角形的全等首先要找出已经具备哪些已知条件,即相等的边或相等的角,根据三角形的判定方法判定缺少哪些条件8如图,在abc中,ab=ac,adbc,垂足为d,且bc=6cm,则bd=()a1cmb2cmc3cmd4cm【考点】等腰三角形的性质 【分析】由在abc中,ab=ac,adbc,根据三线合一的性质求解即可求得bd的长【解答】解:ab=ac,adbc,bd=bc=6=3(cm)故选c【点评】此题考查了等腰三角形的性质注意等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合9如图,abcdcb,若a=80,acb=40,则bcd等于()a80b60c40d20【考点】全等三角形的性质 【分析】根据三角形内角和定理可求abc=60,根据全等三角形的性质可证dcb=abc,即可求dcb【解答】解:abcdcb,acb=dbc,abc=dcb,abc中,a=80,acb=40,abc=1808040=60,bcd=abc=60,故选b【点评】本题考查了全等三角形的性质和三角形内角和定理解答时,除必备的知识外,还应将条件和所求联系起来,即将所求的角与已知角通过全等及内角之间的关系联系起来10如图,将三角板的直角顶点放在直角尺的一边上,1=30,2=50,则3的度数为()a80b50c30d20【考点】平行线的性质;三角形的外角性质 【专题】计算题【分析】由bcde得内错角cbd=2,由三角形外角定理可知cbd=1+3,由此可求3【解答】解:如图,bcde,cbd=2=50,又cbd为abc的外角,cbd=1+3,即3=5030=20故选d【点评】本题考查了平行线的性质,三角形的外角性质,关键是利用平行线的性质,将所求角与已知角转化到三角形中,寻找角的等量关系二、填空题(每题3分,共30分)11abc和abc中,已知a=b,ab=bc,增加条件b=c可使abcbca(asa)【考点】全等三角形的判定 【分析】添加条件是b=c,根据asa推出两三角形全等即可【解答】解:b=c,理由是:在abc和bca中abcbca(asa)【点评】本题考查了全等三角形的判定的应用,能正确运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有sas,asa,aas,sss,直角三角形全等还有hl定理12若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为15,20,25【考点】三角形;一元一次方程的应用 【分析】先设三角形的三边长分别为3x,4x,5x,再由其周长为60cm求出x的值即可【解答】解:三角形的三边长的比为3:4:5,设三角形的三边长分别为3x,4x,5x其周长为60cm,3x+4x+5x=60,解得x=5,三角形的三边长分别是15,20,25,故答案为:15,20,25【点评】此题考查三角形的问题,关键是根据三角形的三边关系解答13在abc中,若a=80,c=20,则b=80;若a=80,b=c,则c=50【考点】三角形内角和定理 【分析】根据三角形的内角和定理解答即可【解答】解:因为a=80,c=20,所以b=1808020=80;因为a=80,b=c,所以c=(18080)2=50,故答案为:80;50【点评】此题考查三角形内角和问题,关键是根据三角形内角和是180进行解答14已知abc的三个内角的度数之比a:b:c=1:3:5,则b=60度,c=100度【考点】三角形内角和定理 【分析】已知三角形三个内角的度数之比,可以设一份为k,根据三角形的内角和等于180列方程求三个内角的度数【解答】解:设一份为k,则三个内角的度数分别为k,3k,5k则k+3k+5k=180,解得k=20所以3k=60,5k=100,即b=60,c=100【点评】此类题利用三角形内角和定理列方程求解可简化计算15五边形的对角线共有5条,它的内角和为540度【考点】多边形内角与外角;多边形的对角线 【分析】根据多边形对角线总条数的计算公式进行计算即可得到对角线总数;根据多边形的内角和公式180(n2)可得五边形内角和【解答】解:五边形的对角线共有=5,它的内角和为180(52)=540,故答案为:5;540【点评】此题主要考查了多边形内角和和对角线,多边形内角和定理:(n2)180 (n3)且n为整数)16如图所示,已知ab=ac,在abd与acd中,要使abdacd,还需要再添加一个条件是ad平分bac【考点】全等三角形的判定 【分析】此题是一道开放型的题目,答案不唯一,如也可以添加条件adbc等【解答】解:ad平分bac,理由是:ad平分bac,bad=cad,在abd和acd中abdacd(sas),故答案为:ad平分bac【点评】本题考查了全等三角形的判定和等腰三角形的性质的应用,能正确运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有sas,asa,aas,sss,直角三角形全等还有hl定理17如图abdcdb,若ab=4,ad=5,bd=6,则bc=5,cd=4【考点】全等三角形的性质 【分析】已知abdcdb,根据全等三角形的对应边相等从而求解【解答】解:abdcdbbc=ad,cd=abab=4,ad=5bc=5,cd=4故答案为:5,4【点评】此题主要考查学生对全等三角形的边对应相等的理解及运用18如图,在abc中,a=45,b=60,则外角acd=105度【考点】三角形的外角性质 【专题】常规题型【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解【解答】解:a=45,b=60,acd=a+b=45+60=105故答案为:105【点评】本题主要考查了三角形的外角性质,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键19已知abcdef,且a=90,ab=6,ac=8,bc=10,def中最大边长是10,最大角是90度【考点】全等三角形的性质 【分析】abc中,最大角为a=90,最大边是斜边bc=10;根据全等三角形的性质:全等三角形的对应边和对应角相等,则def的最大边长应该是10,最大角是90【解答】解:abcdef,且a=90;def也是直角三角形;即def的最大角是90;已知abc的斜边bc=10,故def中最大边长是10【点评】本题主要考查全等三角形的性质,能够正确的找出全等三角形的对应边和对应角是解答此类题的关键20若一个多边形的每个外角都为40,则它的边数是9【考点】多边形内角与外角 【分析】多边形的外角和是360,又有多边形的每个外角都等于40,所以可以求出多边形外角的个数,进而得到多边形的边数【解答】解:这个多边形的边数是:36040=9,故答案为:9【点评】本题考查多边形的外角和,以及多边形外角的个数与其边数之间的相等关系三.解答题(共60分)21一个三角形有两条边相等,周长为20cm,三角形的一边长6cm,求其他两边长【考点】三角形 【分析】题目给出等腰三角形有一条边长为6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【解答】解:(1)当6是腰时,底边=2062=8cm,即其它两边是6cm,8cm,此时6+6=12,能构成三角形;(2)当6是底边时,腰=(206)2=7cm,此时能构成三角形,所以其它两边是7cm、7cm因此其它两边长分别为7cm,7cm,综上所述两边长分别为6cm,8cm或7cm,7cm【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键22如图,abcd,bc与ad相交于点m,n是射线cd上的一点若b=65,mdn=135,求:amb的度数【考点】平行线的性质;三角形的外角性质 【分析】根据平行线的性质求出bam,再由三角形的内角和定理可得出amb【解答】解:abcd,a+mdn=180,a=180mdn=45,在abm中,amb=180ab=70【点评】本题考查了平行线的性质,解答本题的关键是掌握:两直线平行同旁内角互补,及三角形的内角和定理23如图,ce=cb,cd=ca,dca=ecb,求证:de=ab【考点】全等三角形的判定与性质 【专题】证明题【分析】求出dce=acb,根据sas证dceacb,根据全等三角形的性质即可推出答案【解答】证明:dca=ecb,dca+ace=bce+ace,dce=acb,在dce和acb中,dceacb,de=ab【点评】本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中24已知:ab=cd,abdc,求证:abccda【考点】全等三角形的判定 【专题】证明题【分析】由平行可得1=2,加上ab=cd,且ac为公共边可证得结论【解答】证明:abcd,1=2,在abc和cda中,abccda(sas)【点评】本题主要考查三角形全等的判定,正确掌握三角形全等的判定方法是解题的关键25如图,aebc,dfbc,e,f是垂足,且ae=df,ab=dc,求证:abc=dcb【考点】全等三角形的判定与性质 【专题】证明题【分析】根据hl证明rtabe与rtcdf全等,再利用全等三角形的性质证明即可【解答】证明:aebc,dfbc,在rtabe与rtcdf中,rtabertcdf(hl),abc=dcb【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“sss”、“sas”、“asa”、“aas”,“hl”;全等三角形的对应角相等26如图,已知ac=fe,bc=de,点a、d、b、f在一条直线上,ad=fb求证:abcfde【考点】全等三角形的判定 【专题】证明题【分析】由ad=fb,易证得ab=fd,然后由ac=fe,bc=de,利用sss,即可证得:abcfde【解答】证明:ad=fb,ad+bd=fb+bd,ab=fd,在abc和fde中,abcfde(sss)【点评】此题考查了全等三角形的判定注意三条边分别对应相等的两个三角形全等27已知:点d在ab上,点e在ac上,beac,cdab,ab=ac,求证:b=c【考点】全等三角形的判定与性质 【专题】证明题【分析】根据aas证明abe与acd全等,再利用全等三角形的性质证明即可【解答】证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年花艺师职业资格考试真题模拟训练-花卉市场消费心理分析试题
- 2025年高压电工考试题库(高压电器设备原理)高压设备操作与维护解析试题
- 2025年乡村医生考试题库:农村慢性病管理慢性病患者的社区康复护理质量控制试题
- 2025年中学教师资格考试《综合素质》核心考点特训题库(含答案)之教育心理学填空题
- 2025年统计学期末考试:假设检验在统计推断中的数据处理与结果解读试题
- 2025安徽安庆市怀宁县县属国有企业引进副总经理级别高管2人备考题库及答案解析
- 2025安徽宣城市广德市大学生乡村医生专项计划招聘3人笔试参考题库附答案解析
- 2025四川乐山市沙湾区中医医院自主招聘6人笔试参考题库附答案解析
- 2025海南省商业学校招聘事业编制人员(第二批)7人(第1号)笔试参考题库附答案解析
- 2025四川达州远航职业技术学校招聘12人考试参考题库附答案解析
- 培训钉钉课件
- 新建洞室储气库压缩空气储能系统的经济性及成本分析
- 艺康servsafe培训课件
- 砖厂职业危害管理制度
- 肝功能障碍患者的麻醉管理要点
- 2025年粮油仓储管理员(高级)职业技能鉴定考试练习题库(含答案)
- 【课件】新高三启动主题班会:启航高三逐梦未来
- 历史 2024-2025学年部编版七年级历史下学期期末问答式复习提纲
- 2025年中国邮政集团有限公司北京分公司招聘笔试冲刺题(带答案解析)
- 学校物业服务应急事件处理预案
- 单位车辆管理委托协议书示例3篇
评论
0/150
提交评论