上海教育版数学七上10.5《可以化成一元一次方程的分式方程》word教案.doc_第1页
上海教育版数学七上10.5《可以化成一元一次方程的分式方程》word教案.doc_第2页
上海教育版数学七上10.5《可以化成一元一次方程的分式方程》word教案.doc_第3页
上海教育版数学七上10.5《可以化成一元一次方程的分式方程》word教案.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

105可以化成一元一次方程的分式方程教学目标1.进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径。2. 在教师的引导下,探索分式方程是如何转化为整式方程,并发现解分式方程验根的必要性。3在讨论可以化为一元一次方程的分式方程时,提高学生综合分析和解决实际问题的能力。教学重点与难点1.探索如何将分式方程转化为整式方程。2.探索分式方程产生增根的原因。教学流程设计归纳总结发现规律加以理解实际运用创设情景引出新知提出问题引发思考教学过程设计一、情景引入小明和小丽比赛打字的速度,小丽每分钟比小明少打30个字,在相同的时间里,小丽打了2400个字,小明打了3000个字。请问:小丽和小明每分钟分别可打多少个字?解:设小明每分钟可打x个字,则小丽每分钟可打(x-30)个字。根据题意可列出以下等量关系: 这个方程的分母中含有未知数,与以前学过的方程不同,这就是我们要学习的分式方程。分式方程的定义:分母中含有未知数的方程叫做分式方程以前学过的像一元一次方程、二元一次方程等这类分母中不含有未知数的方程叫整式方程二、引发思考如何解这个方程呢?先由学生讨论如何解这个方程,教师可适当引导,可以设法去掉方程中分式的分母,转化为以前学过的方程来求解。方程两边同时乘以x(x-30),得 2400x=3000(x-30)这就转化成我们以前学过的整式方程,得 x=150 得,x-30=120如果我们想检验一下这种方法的正确性,就需要检验一下求出的数是否是方程的解。检验:把x=150代入原方程 因为 左边=20 右边=20 所以 左边=右边 所以x=150是原方程的解。答:小明每分钟可打150个字,小丽每分钟可打120个字。 三、学习新课练习:判断下列哪些方程是分式方程? 1 x+3y= 2. =5 3. 4. 5. 6. 学生讨论回答,得出结论 (1) (6)是整式方程, (2) (3) (4) 是分式方程, (5)是代数式. 例1. 解方程. 先由学生讨论如何解这个方程在学生讨论的基础上分析,解分式方程的关键是去分母,如何去掉分母呢? 可以两边同时乘以分母的最简公分母,将分式方程转化为我们比较熟悉的整式方程解 方程两边同时乘以2(3x+1)来 2(2x-1)=3x+1 去括号,得 4x-2=3x+1 移项,化简得 x=3检验,将x=3代入原方程,得 左边=右边所以x=3是原方程的解一元方程的解也叫做方程的根如x=3也可以说是方程的根例2. 解方程 由学生独立完成,看是否能发现问题,并发现问题产生的原因 解 方程两边同时乘以x-1,得 x+x-1=1, 移项,化简得 x=1, 检验,将x=1代入原方程,结果发现方程中分式的分母为零,此时分式无意义 所以x=1不是原方程的解,原方程无解.引出增根的概念, 使分式方程中分母为零的根叫做增根 x=1就是分式方程的增根讨论: 1,2两题都是方程两边同时乘以最简公分母将分式方程转化为整式方程,为什么第2题求出的x=1不是原方程的解呢?解分式方程时为什么有时会产生增根呢?分式方程转化为整式方程的过程必须两边同时乘以一个适当的整式.由于这个整式可能为零,使本不相等的两边也相等了,这时就产生了增根.所以解分式方程必须检验,而检验的方法只需看所得的解是否使所乘的式子为零.由此可以想到,只要把求得的x的值代入所乘的整式(即最简公分母),若该式的值不等于零,则是原方程的根; 若该式的值为零,则是原方程的增根,这种验根方法比较便捷.练习: 解方程(1). (2) 注意学生书写的格式规范学生讨论归纳出解分式方程的一般步骤:1.在方程的两边都乘以最简公分母,化为整式方程.2.解方程.3.检验.教学设计说明:本章讨论可以化为一元一次方程的分式方程,解方程中要应用分式的基本性质,并且出现了必须验根的环节,这是不同于解以前学习的方程的新问题。根据实际问题列出分式方程,是本章教学中的难点,克服它的关键是提高分析问题中数量关系的能力。 借助对分式的认识学习分式的内容,是一种类比的认识方法,解分式方程用的是化归思想,分式方程一般要先化为整式方程再求解,注意验根是必不可少的步骤。 本节课的引入安排了实际生活中的例子,更贴近学生的实际,在学生讨论时,注意结合分析、解决实际问题的逐步深入。在讨论分式方程的解法时,从分析分式方程的特点入手,引出解分式方程的基本思路,即通过去分母使分式方程化为整式方程,再解出未知数。这里解分式方程的基本思路是很自然、很合理地产生的,这种处理既突出了分式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论