2019年必修四向量知识点总结.doc_第1页
2019年必修四向量知识点总结.doc_第2页
2019年必修四向量知识点总结.doc_第3页
2019年必修四向量知识点总结.doc_第4页
2019年必修四向量知识点总结.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2019年必修四向量知识点总结 知识点是网络课程中信息传递的基本单元,研究知识点的表示与关联对提高网络课程的学习导航具有重要的作用。下面是必修四向量知识点总结,请参考! 向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作ab。若a、b不共线,则ab的模是:ab=|a|b|sina,b;ab的方向是:垂直于a和b,且a、b和ab按这个次序构成右手系。若a、b共线,则ab=0。 向量的向量积性质: ab是以a和b为边的平行四边形面积。 aa=0。 ab=ab=0。 向量的向量积运算律 ab=-ba; (a)b=(ab)=a(b); (a+b)c=ac+bc. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作a,b并规定0a,b 定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a|b|cosa,b;若a、b共线,则ab=+-ab。 向量的数量积的坐标表示:ab=xx+yy。 向量的数量积的运算律 ab=ba(交换律); (a)b=(ab)(关于数乘法的结合律); (a+b)c=ac+bc(分配律); 向量的数量积的性质 aa=|a|的平方。 ab=ab=0。 |ab|a|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(ab)ca(bc);例如:(ab)2a2b2。 2、向量的数量积不满足消去律,即:由ab=ac(a0),推不出b=c。 3、|ab|a|b| 4、由|a|=|b|,推不出a=b或a=-b。 初中数学平面向量公式大全(二) 向量公式: 1.单位向量:单位向量a0=向量a/|向量a| 2.P(x,y)那么向量OP=x向量i+y向量j |向量OP|=根号(x平方+y平方) 3.P1(x1,y1)P2(x2,y2) 那么向量P1P2=x2-x1,y2-y1 |向量P1P2|=根号(x2-x1)平方+(y2-y1)平方 4.向量a=x1,x2向量b=x2,y2 向量a*向量b=|向量a|*|向量b|*Cos=x1x2+y1y2 Cos=向量a*向量b/|向量a|*|向量b| (x1x2+y1y2) = 根号(x1平方+y1平方)*根号(x2平方+y2平方) 5.空间向量:同上推论 (提示:向量a=x,y,z) 6.充要条件: 如果向量a向量b 那么向量a*向量b=0 如果向量a/向量b 那么向量a*向量b=|向量a|*|向量b| 或者x1/x2=y1/y2 7.|向量a向量b|平方 =|向量a|平方+|向量b|平方2向量a*向量b =(向量a向量b)平方 数乘向量 实数和向量a的乘积是一个向量,记作a,且a=a。 当0时,a与a同方向; 当0时,a与a反方向; 当=0时,a=0,方向任意。 当a=0时,对于任意实数,都有a=0。 注:按定义知,如果a=0,那么=0或a=0。 实数叫做向量a的系数,乘数向量a的几何意义就是将表示向量a的有向线段伸长或压缩。 当1时,表示向量a的有向线段在原方向(0)或反方向(0)上伸长为原来的倍; 当1时,表示向量a的有向线段在原方向(0)或反方向(0)上缩短为原来的倍。 数与向量的乘法满足下面的运算律 结合律:(a)b=(ab)=(ab)。 向量对于数的分配律(第一分配律):(+)a=a+a. 数对于向量的分配律(第二分配律):(a+b)=a+b. 数乘向量的消去律:如果实数0且a=b,那么a=b。如果a0且a=a,那么=。 向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x,y+y)。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 向量的减法如果a、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论