阅读与思考笛卡儿与解析几何_第1页
阅读与思考笛卡儿与解析几何_第2页
阅读与思考笛卡儿与解析几何_第3页
阅读与思考笛卡儿与解析几何_第4页
阅读与思考笛卡儿与解析几何_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

笛卡尔的生平简介及主要成就一、生平简介1、笛卡尔是法国伟大的数学家、哲学家和物理学家。他的研究涉及多个领域。 1596年3月31日他出生在法国都兰的贵族家庭,自幼丧母,体弱多病,8岁入拉弗来什公学读书。教师考虑到他的特殊情况,允许他每天早上晚起多睡。但笛卡尔利用这段时间进行晨读,并养成善于思考的习惯。传说笛卡尔是躺在床上观察虫子在天花板上爬行的位置,激发了灵感,使他产生了坐标的概念。2、1612年他入普瓦界大学攻读法学,四年后获博士学位,后去巴黎当律师。1618年参军,部队到荷兰南部的小城布勒达时,一次巧遇街头小报上在征解数学难题,笛卡尔成功的应解,这使他对数学发生兴趣,并坚定他终身研究数学的决心。1619年11月部队到达多瑙河上的一个小镇时,他不断思考怎样把代数应用到几何中去。他曾说:“我想去寻求一种新的,包含两门学科的好处,而又没有它们缺点的方法。”他在致力研究数学中一门完全崭新的领域,这个领域后来被牛顿称之为解析几何。二、主要贡献 1、法国数学家、物理学家、哲学家笛卡尔,生前因怀疑教会信条受到迫害,长年在国外避难。他的著作在他生前或被禁止出版或被烧毁,他死后多年还被列入“禁书目录”。但在今天,法国首都巴黎安葬民族先贤的圣日耳曼圣心堂中,庄重的大理石墓碑上镌刻着“笛卡尔,欧洲文艺复兴以来,第一个为人类争取并保证理性权利的人”。2、笛卡尔的著作,无论是数学、自然科学,还是哲学,都开创了这些学科的崭新时代。几何学是他公开发表的唯一数学著作,虽则只有117页,但它标志着代数与几何的第一次完美结合,使形形色色的代数方程表现为不同的几何图形,许多相当难解的几何题转化为代数题后能轻而易举地找到答案. 。在几何学中,笛卡尔分析了几何学与代数学的优缺点,指出:希腊人的几何过于抽象,而且过多的依赖于图形,总是要寻求一些奇妙的想法。代数却完全受法则和公式的控制,而且还阻碍了自由的思想和创造力的发展。他同时看到了几何的直观与推理的优势和代数机械化运算的力量。于是笛卡尔着手解决这个问题,并由此创立了解析几何。所以说笛卡尔是解析几何的创始人。 3、笛卡尔一生为人类作了多方面的贡献,他在1634年写的宇宙学,包含当时被教会视为“异端”的观点:他提出地球自转和宇宙无限;他提的漩涡说是当时最具权威的太阳起源理论;他还提出了光的本性是粒子流的假说,并认为在广袤无垠的太空中存在着极其精细的以太。他还是西方现代哲学思想的奠基人,是近代唯物论的开拓者,提出了“普遍怀疑”的主张。他的“二元论”哲学思想,我思故我在,深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学。直到二三百年以后,笛卡尔的这些观点仍具有很高的研究价值。三、传奇故事 1、 1647年深秋的一个夜晚,在巴黎近郊,两辆马车疾驰而过。马车在教堂的门前停下。身佩利剑的士兵押着一个瘦小的老头儿走进教堂。他就是近代数学的奠基人、伟大的哲学家和数学家笛卡尔。由于他在著作中宣传科学,触犯了所谓的神权,因而遭到了当时教会的残酷迫害。宏伟的教堂里,烛光照射在圣母玛丽亚的塑像上。塑像前是审判席。被告席上的笛卡尔开始接受天主教会法庭对他的宣判:“笛卡尔散布异端邪说,违背教规,亵渎上帝。为纯洁教义,荡涤谬误,本庭宣判笛卡尔所著之书全为禁书,并由本人当庭焚毁。”笛卡尔想申辩,但士兵立即把他从被告席上拉下来,推到火盆旁,笛卡尔用颤抖的手拿起一本本凝结了他毕生心血的著作,无可奈何地投入火中。 2、说起笛卡尔投身数学,多少有一些偶然性。有一次部队开进荷兰南部的一个城市,笛卡尔在街上散步,看见当地的街上用佛来米语书写的公开征解的几道数学难题招贴。许多人在此招贴前议论纷纷,他旁边的一位中年人用法语替他翻译了这几道数学难题的内容。第二天,聪明的笛卡尔兴冲冲地把解答交给了那位中年人。中年人看了笛卡尔的解答十分惊讶。巧妙的解题方法,准确无误的计算,充分显露了他的数学才华。原来这位中年人就是当时有名的数学家贝克曼教授。笛卡尔以前读过他的著作,但是一直没有机会认识他。从此,笛卡尔就在贝克曼的指导下开始了对数学的深入研究。所以有人说,贝克曼“把一个业已离开科学的心灵,带回到正确、完美的成功之路”。1621年笛卡尔离开军营遍游欧洲各国。1625年回到巴黎从事科学工作。为综合知识、深入研究,1628年变卖家产,定居荷兰潜心著述达20年。 3、1619年在多瑙河的军营里,笛卡尔用大部分时间思考着他在数学中的新想法:能不能用代数中的计算过程来代替几何中的证明呢?要这样做就必须找到一座能连接(或说融合)几何与代数的桥梁,使几何图形数值化。笛卡尔用两条互相垂直且交于原点的数轴作为基准,将平面上的点的位置确定下来,这就是后人所说的笛卡尔坐标系。笛卡尔坐标系的建立,为用代数方法研究几何架设了桥梁。笛卡尔坐标系的建立,把过去并列的两个数学研究对象“形”和“数”统一起来,把几何方法和代数方法统一起来,从而使传统的数学有了一个新的突破。关于笛卡尔的这一发现,有些史料曾有这样一段记述:由于对科学目的和科学方法的狂热追求,新几何的影子不时萦绕脑际。1619年11月10日这一天,笛卡尔做了一个触发灵感的梦。他梦见一只苍蝇,飞动时划出一条美妙的曲线,然后一个黑点停在有方格的窗纸上,黑点到窗棂的距离确定了它的位置,梦醒后,笛卡尔异常兴奋,理性主义的理性追求竟由此顿悟而生!笛卡尔后来曾说,他的梦像一把打开宝库的钥匙,这把钥匙就是坐标几何,由于教会势力的控制,笛卡尔的坐标几何的思想未能及时公诸于世。解析几何创立的背景及过程一、解析几何的创立源于数学研究外部内部的双重需要,具体分析如下:1、 外部条件:十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验时,物体是沿着抛物线运动的。这些发现都涉及到圆锥曲线(我们后面即将学习的内容),要研究这些复杂的曲线,原先的一套方法显然已经不适应了,这就从外部条件方面导致了解析几何的出现。2、 内部条件笛卡尔对当时的几何方法和代数方法进行比较,分析了它们各自的优缺点。他认为,没有任何东西比几何图形更容易印入人脑,用图形表达事物非常有益。但他对欧几里得几何中许多定理的证明需要奇巧的想法深感不安,他还批评希腊人的几何过多依赖图形。他看到了代数的力量,认为代数在提供广泛的方法论发面高于欧几里得的几何学。即,欧氏几何刻意追求抽象和技巧,而代数在提供广泛的方法论方面高于欧氏几何,于是梦寐以求用代数改造几何,他曾计划写一本书思想的指导法则,书中提出一个大胆的方案:一切问题都可以化为数学问题,一切数学问题都可以化为代数问题,一切代数问题都可以化为含有一个未知数的方程问题。为了实现上述的设想,笛卡尔从天文和地理的经纬制度出发,指出平面上的点和实数对(x, y)的对应关系。(x, y)的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。这就是解析几何的基本思想。虽然这个方案最终以失败告终,但笛卡尔把方程用于几何的想法就从内部条件方面导致了解析几何的产生。二、与坐标系产生有关的两个传说1、笛卡尔用大部分时间思考着他在数学中的新想法:能不能用代数中的计算过程来代替几何中的证明呢?要这样做就必须找到一座能连接(或说融合)几何与代数的桥梁,使几何图形数值化。笛卡尔用两条互相垂直且交于原点的数轴作为基准,将平面上的点的位置确定下来,这就是后人所说的笛卡尔坐标系。关于笛卡尔的这一发现,有些史料曾有这样一段记述:由于对科学目的和科学方法的狂热追求,新几何的影子不时萦绕脑际。1619年11月10日这一天,笛卡尔做了一个触发灵感的梦。他梦见一只苍蝇,飞动时划出一条美妙的曲线,然后一个黑点停在有方格的窗纸上,黑点到窗棂的距离确定了它的位置,梦醒后,笛卡尔异常兴奋,理性主义的理性追求竟由此顿悟而生!笛卡尔后来曾说,他的梦像一把打开宝库的钥匙,这把钥匙就是坐标几何。2、另一个版本是,据说有一天,法国哲学家、数学家笛卡尔生病卧床,病情很重,尽管如此他还反复思考一个问题:几何图形是直观的,而代数方程是比较抽象的,能不能把几何图形与代数方程结合起来,也就是说能不能用几何图形来表示方程呢?要想达到此目的,关键是如何把组成几何图形的点和满足方程的每一组“数”挂上钩,他苦苦思索,拼命琢磨,通过什么样的方法,才能把“点”和“数”联系起来。突然,他看见屋顶角上的一只蜘蛛,拉着丝垂了下来,一会功夫,蜘蛛又顺着丝爬上去,在上边左右拉丝。蜘蛛的“表演”使笛卡尔的思路豁然开朗。他想,可以把蜘蛛看做一个点,它在屋子里可以上、下、左、右运动,能不能把蜘蛛的每个位置用一组数确定下来呢?他又想,屋子里相邻的两面墙与地面交出了三条线,如果把地面上的墙角作为起点,把交出来的三条线作为三根数轴,那么空间中任意一点的位置就可以用这三根数轴上找到有顺序的三个数。反过来,任意给一组三个有顺序的数也可以在空间中找出一点P与之对应,同样道理,用一组数(x、y)可以表示平面上的一个点,平面上的一个点也可以有用一组两个有顺序的数来表示,这就是坐标系的雏形。 笛卡尔最初使用的坐标系中,两个坐标轴的夹角不要求一定是直角,而且y轴并没有明显的出现。至于“坐标”“坐标系”“横坐标”“纵坐标”等名词,也都是后来人们逐渐使用的,虽然笛卡尔当初的坐标系还不够完善,但是笛卡尔当初迈出的第一步具有决定意义,所以人们仍然把后来的直角坐标系叫作笛卡尔直角坐标系。笛卡尔在他唯一所写的一本数学书几何学中引入了坐标方法和用方程表示曲线的思想,于是后人就把这本几何学的发表作为解析几何创立的标志。几乎与他同时,另一位法国数学家费马也在自己的研究中独立得到了用方程表示曲线的思想,因此,费马和笛卡尔同为解析几何的创始人。(有关费马的生平及主要成就有兴趣的同学可以网上查阅)解析几何创立的意义及影响1、解析几何出现以前,代数已有了相当大的进展,因此解析几何不是一个巨大的成就,但在方法论上却是一个了不起的创建。解析几何把代数和几何结合起来,把数学构造成一个具有两种作用的工具。一方面,几何概念可以用代数表示,几何的目的通过代数来达到。反过来,另一方面,给代数概念以几何解释,可以直观地掌握这些概念的意义。又可以得到启发去提出新的结论。2、 解析几何的显著优点在于它是数量工具。这个数量工具是科学的发展久已迫切需要的。十七世纪一直公开要求的,例如当开普勒发现行星沿椭圆轨道绕着太阳运动,伽利略发现抛出去的石子沿着抛物线的轨道飞出去时就必须计算这些椭圆和炮弹飞时所画的抛物线了。这些都需要提供数量的工具,研究物理世界,似乎首先需求几何。物体基本上是几何的形象,运动物体的路线是曲线,研究它们都需要数量知识。而解析几何能使人把形象和路线表示为代数形式,从而导出数量知识。3、解析几何的出现,改变了自古希腊以来代数和几何分离的趋向,把相互对立着的“数” 与“形”统一了起来,使几何曲线与代数方程相结合。笛卡尔的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域。最为可贵的是,笛卡尔用运动的观点,把曲线看成点的运动的轨迹,不仅建立了点与实数的对应关系,而且把形(包括点、线、面)和“数”两个对立的对象统一起来,建立了曲线和方程的对应关系。这种对应关系的建立,不仅标志着函数概念的萌芽,而且标明变数进入了数学,使数学在思想方法上发生了伟大的转折-由常量数学进入变量数学的时期。正如恩格斯所说:“数学中的转折点是笛卡尔的变数。有了变数,运动进入了数学,有了变数,辨证法进入了数学,有了变数,微分和积分也就立刻成为必要了。笛卡尔的这些成就,为后来牛顿、莱布尼兹发现微积分,为一大批数学家的新发现开辟了道路。为什么恩格斯对解析几何有如此高的评价?(开放性问题,学生回答,言之有理即可)1.坐标法的使用,为数学中平面到空间、一维到多维提供了一般的研究方法。2.解析几何的建立使得数学从常量研究进入了变量数学。3.解析几何的建立为后面的微积分产生奠定了基础。4. 解析几何的建立为数学问题机械化解决提供了先决条件,最突出的是我国数学家吴文俊的的机器证明。(课本124125页阅读与思考)百岁山广告背后的故事一直没看懂百岁山的广告,众人都纷纷表示:广告画面唯美、格调雅致,但是看不懂广告讲述的故事情节。没想到广告里讲诉的是一个凄美浪漫的爱情故事。1650年,斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。那时,落魄、一文不名的笛卡尔过着乞讨的生活,全部的财产只有身上穿的破破烂烂的衣服和随身所带的几本数学书籍。生性清高的笛卡尔从不开口请求路人施舍,他只是默默地低头在纸上写写画画,潜心于他的数学世界。一个宁静的午后,笛卡尔照例坐在街头,沐浴在阳光中研究数学问题,突然,有人来到他身旁,拍了拍他的肩膀,“你在干什么呢?”扭过头,笛卡尔看到一张年轻秀丽的脸庞,一双清澈的眼睛如湛蓝的湖水,楚楚动人,长长的睫毛一眨一眨的,她就是瑞典的小公主,国王最宠爱的女儿克里斯汀。她蹲下身,拿过笛卡尔的数学书和草稿纸,和他交谈起来。言谈中,他发现这个小女孩思维敏捷,对数学有着浓厚的兴趣。和女孩道别后,笛卡尔渐渐忘却了这件事,依旧每天坐在街头写写画画。几天后,他意外地接到通知,国王聘请他做小公主的数学老师,满心疑惑的笛卡尔跟随前来通知的侍卫一起来到皇宫,在会客厅等候的时候,他听到了从远处传来银铃般的笑声。转过身,他看到了前几天在街头偶遇的女孩子,慌忙中,他赶紧低头行礼。从此,他便当上了公主的数学老师。公主的数学在笛卡尔的悉心指导下突飞猛进,他们之间也开始变得亲密起来。笛卡尔向她介绍了他研究的新领域直角坐标系。通过它,代数和几何可以结合起来,也就是日后笛卡尔创立的解析几何的雏形。在笛卡尔的带领下,克里斯汀走进了奇妙的坐标世界,她对曲线着了迷。每天的形影不离也使他们彼

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论