2019_2020学年高中数学课时跟踪检测(十五)反证法(含解析)新人教A版.docx_第1页
2019_2020学年高中数学课时跟踪检测(十五)反证法(含解析)新人教A版.docx_第2页
2019_2020学年高中数学课时跟踪检测(十五)反证法(含解析)新人教A版.docx_第3页
2019_2020学年高中数学课时跟踪检测(十五)反证法(含解析)新人教A版.docx_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时跟踪检测(十五) 反证法一、题组对点训练对点练一用反证法证明“否定性”命题1应用反证法推出矛盾的推理过程中,可作为条件使用的是()结论的否定;已知条件;公理、定理、定义等;原结论A BC D解析:选C根据反证法的基本思想,应用反证法推出矛盾的推导过程中可把“结论的否定”、“已知条件”、“公理、定理、定义”等作为条件使用2用反证法证明“一个三角形不能有两个直角”有三个步骤:ABC9090C180,这与三角形内角和为180矛盾,故假设错误所以一个三角形不能有两个直角假设ABC中有两个直角,不妨设A90,B90.上述步骤的正确顺序为_答案:3等差数列an的前n项和为Sn,a11,S393.(1)求数列an的通项an与前n项和Sn;(2)设bn(nN*),求证:数列bn中任意不同的三项都不可能成为等比数列解:(1)设公差为d,由已知得解得d2,故an2n1,Snn(n)(2)证明:由(1)得bnn.假设数列bn中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则bbpbr,即(q)2(p)(r),所以(q2pr)(2qpr)0.又p,q,rN*,所以所以2pr.(pr)20,所以pr,这与pr矛盾所以数列bn中任意不同的三项都不可能成为等比数列对点练二用反证法证明“至多”、“至少”型命题4用反证法证明命题:“三角形的内角中至少有一个不大于60”时,假设正确的是()A假设三内角都不大于60B假设三内角都大于60C假设三内角至少有一个大于60D假设三内角至多有两个大于60解析:选B“至少有一个”即“全部中最少有一个”5设实数a、b、c满足abc1,则a、b、c中至少有一个数不小于_解析:假设a、b、c都小于,则abc1与abc1矛盾故a、b、c中至少有一个不小于.答案:6若x,y,z均为实数,且ax22y,by22z,cz22x,则a,b,c中是否至少有一个大于0?请说明理由解:是假设a,b,c都不大于0,即a0,b0,c0,则abc0.而abcx22yy22zz22x(x1)2(y1)2(z1)23,因为30,且无论x,y,z为何实数,(x1)2(y1)2(z1)20,所以abc0.这与假设abc0矛盾因此,a,b,c中至少有一个大于0.对点练三用反证法证明“唯一性”命题7用反证法证明命题“关于x的方程axb(a0)有且只有一个解”时,反设是关于x的方程axb(a0)()A无解 B有两解C至少有两解 D无解或至少有两解解析:选D“唯一”的否定上“至少两解或无解”8“自然数a,b,c中恰有一个偶数”的否定正确的为()Aa,b,c都是奇数Ba,b,c都是偶数Ca,b,c中至少有两个偶数Da,b,c中都是奇数或至少有两个偶数解析:选D自然数a,b,c的奇偶性共有四种情形:(1)3个都是奇数;(2)2个奇数,1个偶数;(3)1个奇数,2个偶数;(4)3个都是偶数所以否定正确的是a,b,c中都是奇数或至少有两个偶数9求证:两条相交直线有且只有一个交点证明:因为两直线为相交直线,故至少有一个交点,假设两条直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B的直线就有两条,这与“经过两点有且只有一条直线”相矛盾综上所述,两条相交直线有且只有一个交点二、综合过关训练1用反证法证明命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除”,则假设的内容是()Aa,b都能被5整除 Ba,b都不能被5整除Ca不能被5整除 Da,b有1个不能被5整除解析:选B用反证法只否定结论即可,而“至少有一个”的反面是“一个也没有”,故B正确2有以下结论:已知p3q32,求证pq2,用反证法证明时,可假设pq2;已知a,bR,|a|b|2.故的假设是错误的,而的假设是正确的3设a、b、c都是正数,则三个数a,b,c()A都大于2 B至少有一个大于2C至少有一个不大于2 D至少有一个不小于2解析:选D因为a、b、c都是正数,则有6.故三个数中至少有一个不小于2.4已知数列an,bn的通项公式分别为anan2,bnbn1(a,b是常数),且ab,那么两个数列中序号与数值均相同的项的个数有()A0个 B1个 C2个 D无穷多个解析:选A假设存在序号和数值均相等的项,即存在n使得anbn,由题意ab,nN*,则恒有anbn,从而an2bn1恒成立,不存在n使得anbn.5已知平面平面直线a,直线b,直线c,baA,ca,求证:b与c是异面直线,若利用反证法证明,则应假设_解析:空间中两直线的位置关系有3种:异面、平行、相交,应假设b与c平行或相交答案:b与c平行或相交6完成反证法证题的全过程题目:设a1,a2,a7是1,2,7的一个排列,求证:乘积p(a11)(a22)(a77)为偶数证明:假设p为奇数,则_均为奇数因奇数个奇数之和为奇数,故有奇数_0.这与0为偶数矛盾,说明p为偶数解析:证明过程应为:假设p为奇数,则有a11,a22,a77均为奇数,因为奇数个奇数之和为奇数,故有奇数(a11)(a22)(a77)(a1a2a7)(127)0.这与0为偶数矛盾,说明p为偶数答案:a11,a22,a77(a11)(a22)(a77)(a1a2a7)(127)7求证方程2x3有且只有一个根证明:因为2x3,所以xlog23,这说明方程2x3有根下面用反证法证明方程2x3的根是唯一的:假设方程2x3至少有两个根b1,b2(b1b2),则2b13,2b23,两式相除得2b1b21.若b1b20,则2b1b21,这与2b1b21相矛盾若b1b20,则2b1b21,这也与2b1b21相矛盾所以b1b20,则b1b2.所以假设不成立,从而原命题得证8用反证法证明:对于直线l:yxk,不存在这样的非零实数k,使得l与双曲线C:3x2y21的交点A、B关于直线yx对称

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论