


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一讲 地理信息系统与空间分析的基本概念空间数据:拓扑分析、空间叠加、缓冲分析、网络分析 P3数字地面模型(DTM):数字高程模型(DEM):不规则三角网(TIN):地质统计学:是利用空间变量的自相关特征研究空间随机场性质的一种统计理论。它分为(1)结构分析理论;(2)克立格插值理论(插值理论);(3)条件模拟理论。协方差、空间采样理论 P9估计误差:是指实测值与真实值之间的误差。估计方差:是指估计误差的离散程度。第二讲 数字高程模型数字高程模型DEM:是描述地面特性空间分布的有序数值阵列,所记地面特性是高程z,它的空间分布由x , y水平坐标系统来描述。DEM派生信息:以数字地面模型为基础,通过数字地形分析(DTA)手段可提取出用于描述地表不同方面特征的参数,这些参数统称为DEM派生信息。坡度、坡向、曲率 P16地面曲率:地面曲率是对地形表面一点扭曲变化程度的定量化度量因子,地面曲率在垂直和水平两个方向上分量分别称为平面曲率和剖面曲率。 剖面曲率、平面曲率、坡形 P18汇流量(汇流面积):一个栅格单元的汇流量是其上游单元向其输送的水流量的总和。地形湿度指数:单位等高线上的汇流面积与坡度之比。通视分析:就是利用DEM判断地形上任意点之间是否可以相互可见的技术方法,分为视线分析和视域分析。第三讲 矢栅空间分析缓冲区:地理空间目标的一种影响范围或服务范围,具体指在点. 线. 面实体周围自动建立的一定宽度的多边形。叠置分析:是将同一地区的两组或两组以上的要素进行叠置,产生新的特征的分析方法。合成叠置、统计叠置 P30交、并、 剪 P31 差、识别 P32距离分析:用于分析图像上每个点与目标的距离,如有多目标,则以最近的距离作为栅格值。距离制图、直线距离分析 P32密度分析:针对一些点要素(或线要素)的特征值(如人口数)并不是集中在点上(或线上)的特点,对要素的特征值进行空间分配,从而更加真实地反映要素分布。密度制图:根据输入的要素数据集计算整个区域的数据聚集状况,从而产生一个连续的密度表面。泰森多边形:设平面有n个互不重叠的离散数据点,则其中任意一个离散数据点Pi都有一个临近范围Bi,在Bi中的任一点同Pi点间的距离都小于它们同其它离散数据点间的距离,其中Bi是一个不规则多边形,称为泰森多边形 。重分类Reclassify:即基于原有数值,对原有数值重新进行分类整理从而得到一组新值并输出,是对单个波段,改变值的分布。重采样Resample:是改变影像分辨率(每个像素点代表矢量大小),可以用于多波段。像元统计、邻域统计、区域统计 P38Aggregate、Majority Filter、Expand和Shrink P38第五讲 空间统计的预备知识随机过程、区域化变量 P42协方差函数、互协方差函数 P44平稳假设:指区域化变量Z(x)的任意n维分布函数不因空间点x发生位移而改变。二阶平稳假设:数学期望与协方差函数均存在且平稳。第六讲 变差函数和结构分析变差函数:区域化变量Z(x)和Z(x+h)两点之差的方差之半定义为Z(x)的变差函数。角度容差、距离容差 P50块金常数、变程、基台值 P51套和结构:实际的区域化变量的变化性是十分复杂的,反映在变差函数上就是它的结构不是单纯的一种结构,而是多层次结构叠加在一起称为套和结构。第八讲 克里格方法体系克里格法:又称空间局部估计或空间局部插值法,克里格法是建立在变异函数理论及结构分析基础上,在有限区域内对区域化变量取值进行线性无偏最优估计的方法。简单克里格法:当区域化变量Z(x)的EZ(x)=m已知,则称为简单克里格法。若Z(x)的EZ(x)未知,则称为普通克里格法。泛克里格法:就是在漂移的形式EZ(x)=m(x),和非平稳随机函数Z(x)的协方差函数C(h)或变异函数(h)为已知的条件下,一种考虑到有漂移的无偏线性估计量的地统计学方法,这种方法属于线性非平稳地统计学范畴。漂移、涨落 P65析取克立格法:假设已知任意区域化变量(Z , Z)及(Z0, Z)二维概率分布条件下,对待估点的值或待估点值超过给定阈值的概率进行估计的一种非线性地统计法。协同克立格法:是多元地统计学研究的基本方法,建立在协同区域化变量理论基础之上,利用多个区域化变量之间的互相关性,通过建立交叉协方差函数和交叉变异函数模型,用易于观测和控制的变量对不易观测的变量进行局部估计。协同区域化:在统计意义及空间位置上均具有某种程度相关性,并且定义于同一空间域中的区域化变量。第十讲 空间模式分析K函数:是点密度距离的函数,其按照一定半径距离的搜索圆范围来统计点数量。理论估计值为d2,对于聚集模式,应大于d2。全局空间自相关:主要描述整个研究区域上空间对象之间的关联程度,以表明空间对象之间是否存在显著的空间分布模式。Morans I统计量 P72空间权重矩阵:在实际使用中,一般通过矩阵形式给出空间逐点的空间权重指标,称为空间权重矩阵。空间邻接指标、空间距离指标、邻居 P73二元邻接矩阵、重心距离矩阵 P73局部空间关联指标LISA:是与I 和C相关的局部化版本,为了说明在局部尺度上空间自相关的水平,需要定义在任意面积单元上导出空间自相关数值。及P76G统计量 P75、空间滞后 P77、Moran显著性地图 P78第十二讲 空间数据挖掘和知识发现数据挖掘:是指从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。空间数据挖掘:是在空间数据库或空间数据仓库的基础上,综合利用多门学科的理论技术,从海量空间数据中挖掘事先未知潜在有用最终可理解的可信新知识,揭示蕴含在空间数据中的客观世界的本质规律内在联系和发展趋势,实现知识的自动获取,提供技术决策与经营决策的依据。空间数据挖掘和知识发现:从空间数据库中抽取和发现新的空间信息,并通过解释评价,产生知识的过程。空间聚类:是根据研究对象(样本或变量)的多种特征在数值上可能存在的相似性程度,将它们聚合为不同的点群的一种挖掘方法。簇(Cluster):一个数据对象的集合在同一个类中,对象之间具有相似性,不同类的对象之间是相异的。聚类分析:把一个给定的数据对象集合分成不同的簇;聚类是一种无监督分类法: 没有预先指定的类别。相似性度量:相关系数、距离系数、夹角余弦、离差平方和及其它的相似性统计量。P86Q型聚类:对样本(个案)进行分类,它使具有共同特点的样本聚齐在一起,以便对不同类的样本进行分析。R型聚类:对研究对象的观察变量进行分类,它使具有共同特征的变量聚在一起,以便从不同类中分别选出具有代表性的变量作分析,从而减少分析变量的个数。划分聚类:给定一个大小为N的数据集,将其分为m类,使类内具有较高的相似度,而类间的相似度较低。第十三讲 常用聚类算法聚类:对大量未标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小。聚类熵:衡量算法的类内和类间相似度。硬聚类:把每个待识别的对象严格的划分某类中,具有非此即彼的性质。模糊聚类:建立了样本对类别的不确定描述,更能客观的反应客观世界,从而成为聚类分析的主流。隶属度函数:是表示一个对象x隶属于集合A的程度的函数,通常记做A(x),其自变量范围是所有可能属于集合A的对象(即集合A所在空间中的所有点),取值范围是0,1,即0=A(x)=1。模糊c均值聚类(FCM):是用隶属度确定每个数据点属于某个聚类的程度的一种聚类算法。第十四讲 SVM(支持向量机)机器学习:主要研究从采集样本出发得出目前尚不能通过原理分析得到的规律,并利用这些规律对未来数据或无法观测的数据进行预测。即从给定的函数集f(x,a)(a是参数)中,选择出能最好地逼近训练器响应的函数。模式识别:对表征事务或现象的各种形式(数值、文字及逻辑关系等)信息进行处理和分析,以对事务或现象进行描述、辨认、分类和解释的过程。经验风险最小化(ERM)原则:使用对参数w求经验风险 的最小值代替求期望风险的最小值。推广能力:学习机器对未来输出进行正确预测的能力称作推广能力(也称为“泛化能力”)。VC维:对于一个指示函数集,如果存在h个样本能够被函数集里的函数按照所有可能的2h种形式分开,则称函数集能够把h个样本打散,函数集的VC维就是能够打散的最大样本数目。SLT:从理论上较为系统地研究了经验风险最小化原则成立的条件、有限样本下经验风险与期望风险的关系及如何利用这些理论找到新的学习原则和方法等问题。结构风险最小化(SRM准则):即把函数集构造为一个函数子集序列,使各个子集按照VC维的大小排列;在每个子集中寻找最小经验风险,在子集间折衷考虑经验风险和置信范围,取得实际风险的最小。支持向量机:从训练集中选择一组特征子集,使得对特征子集的划分等价于对整个数据集的划分,这组特征子集就被称为支持向量(SV)。最优分类面:就是要求分类线不但能将两类正确分开(训练错误率为0),且使分类间隔最大。第十五讲 费舍尔和贝叶斯准则、密度聚类分类:是根据已知类别母体的多种特征建立起一个或多个分类函数,用其来判断未知样本的归属。费歇尔准则:设有两类母体A和B,分别抽取a和b个样本。求一个分割面,使得样本在分割面上的两类投影点,类间离差最大而类内离差最小。DBSCAN:是一个基于密度的聚类算法,寻找被低密度区域分离的高密度区域。核心点、边界点、噪音点 P113基于中心的密度:数据集中特定点的密度通过该点半径之内的点计数(包括本身)来估计。密度依赖于半径。直接密度可达、密度可达、密度相连 P114噪声、K阶临近距离 P114-115第十六讲 时空异常扫描、关联规则挖掘可信度:在事务集W中,如果支持数据项集A的事务中有c%也同时支持数据项集B,则c%称为关联规则AB的可信度。支持度:如果事务集W中有s%的事务同时支持数据项集A和B,则s%称为关联规则的支持度。Apriori算法:是根据有关频繁项集性质的先验知识而命名的。该算法使用一种逐层搜索的迭代方法,利用k-项集探索(k+1)-项集。第十七讲 趋势面分析、元胞自动机与蒙特卡罗模拟趋势面分析:用数学的方法,以数学模型来模拟(或拟合)地理数据的空间分布及其区域性变化趋势的方法。趋势面:是一种抽象的数学曲面,它抽象并过滤掉一些局域随机因素的影响,使地理要素空间分布规律明显化。元胞自动机:是一种由细小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海域使用权租赁与海洋科研合作合同范本
- 水性瓷砖施工与环保评估合同
- 老字号品牌旗舰店租赁及历史传承保护合同
- 公交车辆驾驶员劳动合同及安全行车教育与保障协议
- 2025公务员市考面试题及答案
- 2025年湖北银行考试试题及答案
- 电竞专业考试试题及答案
- 会计专业笔试题目及答案
- 特殊职位专业考试题及答案
- 双重预防管理体系
- 2025贵州贵安城市置业开发投资有限公司招聘32人考试参考题库及答案解析
- 2025全国科普日科普知识竞赛题库及答案
- 【课件】角的概念+课件+2025-2026学年人教版(2024)七年+数学级上册+
- 2025企业劳动合同范本新版
- 2025年防雷检测专业技术人员能力认定考试题库及答案
- 美发裁剪理论知识培训课件
- 舞蹈老师自我介绍课件
- 2025年吉林省教育系统校级后备干部选拔考试题及答案
- 社区安全知识培训资料课件
- 徐学义基础地质调查课件
- 2025主题教育应知应会知识题库及答案
评论
0/150
提交评论