



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学归纳法一、教学目标:1、使学生了解归纳法, 理解数学归纳的原理与实质。2、掌握数学归纳法证题的两个步骤;会用“数学归纳法”证明简单的与自然数有关的命题。3、培养学生观察, 分析, 论证的能力, 进一步发展学生的抽象思维能力和创新能力,让学生经历知识的构建过程, 体会类比的数学思想。4、努力创设课堂愉悦情境,使学生处于积极思考、大胆质疑氛围,提高学生学习的兴趣和课堂效率。5、通过对例题的探究,体会研究数学问题的一种方法(先猜想后证明), 激发学生的学习热情,使学生初步形成做数学的意识和科学精神。二、教学重点:能用数学归纳法证明一些简单的数学命题。教学难点:明确数学归纳法的两个步骤的必要性并正确使用。三、教学方法:探析归纳,讲练结合四、教学过程(一)、复习:1、数学归纳法:对于某些与自然数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(kn*,kn0)时命题成立,证明当n=k+1时命题也成立这种证明方法就叫做数学归纳法2、数学归纳法的基本思想:即先验证使结论有意义的最小的正整数n0,如果当n=n0时,命题成立,再假设当n=k(kn0,kn*)时,命题成立.(这时命题是否成立不是确定的),根据这个假设,如能推出当n=k+1时,命题也成立,那么就可以递推出对所有不小于n0的正整数n0+1,n0+2,命题都成立.3、用数学归纳法证明一个与正整数有关的命题的步骤:(1)证明:当n取第一个值n0结论正确;(2)假设当n=k(kn*,且kn0)时结论正确,证明当n=k+1时结论也正确.由(1),(2)可知,命题对于从n0开始的所有正整数n都正确(二)、探究新课例1、求证:能被9整除,。证明:(1)当n=1时,36能被9整除,命题成立;(2)假设nk(k1)时,命题成立,即能被9整除。当nk+1时,由假设可知,上式的两部分都能被9整除。故nk+1时,命题也成立。根据(1)和(2)可知对任意的,该命题成立。证明整除性问题的关键是“凑项”,可采用增项、减项、拆项和因式分解等手段,凑出nk时的情形,从而利用归纳假设使问题获证。例2、证明:凸n边形的对角线的条数。证明:(1)当n=4时,四边形有两条对角线,命题成立。(2)假设nk(k4)时,命题成立,即凸k边形的对角线的条数.当nk+1时,凸k+1边形是在k边形的基础上增加了一边,增加了一个顶点,增加的对角线条数是顶点与不相邻顶点连线再加上原k边形的一边,共增加的对角线条数为:(k+1-3)+1=k-1。故nk+1时,命题也成立。根据(1)和(2)可知对n4,公式都成立。用数学归纳法证明几何问题的关键是“找项”,即几何元素从k个变成k+1个时,所证的几何量将增加多少,这需用到几何知识或借助于几何图形来分析,在实在分析不出来的情况下,将n=k+1和n=k分别代入所证的式子,然后作差,即可求出增加量,然后只需稍加说明即可,这也是用数学归纳法证明几何命题的一大技巧。例3、已知数列满足,试猜想的通项公式并用数学归纳法证明。解:由和,得,归纳上述结果,可得猜想。下面用数学归纳法证明这个猜想。(1)当n1时,左边,右边,等式成立。(2)假设当nk(k1)时,等式成立,即成立。那么,当nk+1时,。这就是说,当nk+1时等式成立。根据(1)和(2),可知猜想对任意正整数n都成立。探索性命题的求解一般分三步进行:验证p,p,p,p,;提出猜想;用数学归纳法证明。(三)、小结:使用数学归纳法时需要注意:(1)用数学归纳法证明的对象是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 邮储银行2025秦皇岛市秋招笔试英语题专练及答案
- 中国银行2025攀枝花市秋招群面模拟题及高分话术
- 2025行业数字化转型实施指南
- 2025行业创新驱动因素分析
- 建设银行2025盘锦市秋招笔试综合模拟题库及答案
- 交通银行2025宝鸡市信息科技岗笔试题及答案
- 交通银行2025绥化市金融科技岗笔试题及答案
- 交通银行2025运城市秋招笔试热点题型专练及答案
- 工商银行2025汕尾市秋招群面案例总结模板
- 工商银行2025数据分析师笔试题及答案黑龙江地区
- 基坑土石方开挖安全专项施工方案
- 中小学心理健康教育指导纲要考试试题及答案
- 社会统计学-全套课件
- 打印版唐能通
- 物流公司道路运输许可证申请资料范文
- 分公司总经理管理手册
- 六年级上册英语试题Unit1 I go to school at 8:00. 阶段训练一-人教精通版-(无答案 )
- 择菜洗菜和切菜
- (完整版)湘教版地理必修一知识点总结
- [中天]香港置地北郡商业施工策划(共172页)
- 销售人员技能或能力分级定义表一
评论
0/150
提交评论