




已阅读5页,还剩73页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
什么是OTN?1G.709 光传送网(OTN)的基本应用2OTN技术特点及技术探讨14OTN技术发展与应用探讨18光传送网关键技术及应用26面向IP的分组传送网发展思路34全IP时代传送网技术的几个关键问题44城域网络发展趋势探讨5240 Gb/s波分系统设备技术59基于ROADM第三代城域波分复用技术65第二节 光传送网67什么是OTN?OTN(光传送网,OpticalTransportNetwork),是以波分复用技术为基础、在光层组织网络的传送网,是下一代的骨干传送网。OTN通过G.872、G.709、G.798等一系列ITU-T的建议所规范的新一代“数字传送体系”和“光传送体系”。OTN将解决传统WDM网络无波长/子波长业务调度能力、组网能力弱、保护能力弱等问题。 光传送网面向IP业务、适配IP业务的传送需求已经成为光通信下一步发展的一个重要议题。光传送网从多种角度和多个方面提供了解决方案,在兼容现有技术的前提下,由于SDH设备大量应用,为了解决数据业务的处理和传送,在SDH技术的基础上研发了MSTP设备,并已经在网络中大量应用,很好地兼容了现有技术,同时也满足了数据业务的传送功能。但是随着数据业务颗粒的增大和对处理能力更细化的要求,业务对传送网提出了两方面的需求:一方面传送网要提供大的管道,这时广义的OTN技术(在电域为OTH,在光域为ROADM)提供了新的解决方案,它解决了SDH基于VC-12/VC4的交叉颗粒偏小、调度较复杂、不适应大颗粒业务传送需求的问题,也部分克服了WDM系统故障定位困难,以点到点连接为主的组网方式,组网能力较弱,能够提供的网络生存性手段和能力较弱等缺点;另一方面业务对光传送网提出了更加细致的处理要求,业界也提出了分组传送网的解决方案,目前涉及的主要技术包括T-MPLS和PBB-TE等。G.709 光传送网(OTN)的基本应用作者:秦元东 摘要:本文从产品开发者的角度对G.709光传送网(OTN)的基本应用和对其新一代传送网所具有的优势进行了论述。 关键词:G.709OTN 1.引言 随着网络业务对带宽的需求越来越大,运营商和系统制造商一直在不断地考虑改进业务传送技术的问题。 数字传送网的演化也从最初的基于T1/E1的第一代数字传送网,经历了基于SONET/SDH的第二代数字传送网,发展到了目前以OTN为基础的第三代数字传送网。第一、二代传送网最初是为支持话音业务而专门设计的,虽然也可用来传送数据和图像业务,但是传送效率并不高。相比之下,第三代传送网技术,从设计上就支持话音、数据和图像业务,配合其他协议时可支持带宽按需分配(BOD)、可裁剪的服务质量(QoS)及光虚拟转网(OVPN)等功能。 1998年,国际电信联盟电信标准化部门(ITU-T)正式提出了OTN的概念。从其功能上看,OTN在子网内可以以全光形式传输,而在子网的边界处采用光-电-光转换。这样,各个子网可以通过3R再生器联接,从而构成一个大的光网络,如图1所示。因此,OTN可以看作是传送网络向全光网演化过程中的一个过渡应用。 在OTN的功能描述中,光信号是由波长(或中心波长)来表征。光信号的处理可以基于单个波长,或基于一个波分复用组。(基于其他光复用技术,如时分复用,光时分复用,或光码分复用的OTN,还有待研究。)OTN在光域内可以实现业务信号的传递、复用、路由选择、监控,并保证其性能要求和生存性。OTN可以支持多种上层业务或协议,如SONET/SDH,ATM,Ethernet,IP,PDH,FibreChannel,GFP,MPLS,OTN虚级联,ODU复用等,是未来网络演进的理想基础。全球范围内越来越多的运营商开始构造基于OTN的新一代传送网络,系统制造商们也推出具有更多OTN功能的产品来支持下一代传送网络的构建。 在OTN应用的初期,运营商和系统制造商更多地关注OTN作为传输层所具有的功能,本文也仅从传输层的角度来讨论OTN的结构和功能。对于结构和映射基于ITU-TG.709的OTN,我们经常称之为G.709OTN.ITU-T 制定了一系列的建议来规范和促进OTN的发展,表1列出了ITU-T 关于OTN的一些建议。 2.G.709OTN信息结构 (information structure) G.709定义了两种光传送模块(OTM-n),一种是完全功能光传送模块(OTM-n.m),另一种是简化功能光传送模块(OTM-0.m,OTM-nr.m),如图2和图3所示。 OTM-n.m定义了OTN透明域内接口,而OTM-nr.m定义了OTN透明域间接口。这里m表示接口所能支持的信号速率类型或组合,n表示接口传送系统允许的最低速率信号时所能支持的最多光波长数目。当n为0时,OTM-nr.m即演变为OTM-0.m,这时物理接口只是单个无特定频率的光波。 从客户业务适配到光通道层(OCh),信号的处理都是在电域内进行,包含业务负荷的映射复用、OTN开销的插入,这部分信号处理处于时分复用(TDM)的范围。从光通道层(OCh)到光传输段(OTS),信号的处理是在光域内进行,包含光信号的复用、放大及光监控通道(OOS/OSC)的加入,这部分信号处理处于波分复用(WDM)的范围。 G.959.1定义了简化功能光传送模块的物理接口,分别是单跨距单波长接口(OTM-0.1/2.5G,OTM-0.2/10G和OTM-0.3/40G)及单跨距16波长接口(OTM-16r.1/2.5G,OTM-16r.2/10G),物理接口的标准化使得域间互通成为可能。完全功能光传送模块(OTM-n.m)尚没有统一的标准,因为这种接口定义在光透明域内部,一般是同一设备商所提供的网元组成的网络,而设备制造商通常有自己的物理层工程规范包括传输技术、光学参数、波长数目等指标。另外,不同设备制造商使用不同的OSC信息结构,及光通道传送单元(OTUkV),这使得不同设备制造商的设备难以在完全功能光传送模块这一层上互通。 在纯粹的波分复用传送系统中,客户业务的封装及G.709OTN开销插入一般都是在波长转换盘上(OpticalTranslationUnit)完成的,这些过程包含图2或图3中的从Client 层到OCh(r)层的处理。输入信号是以电接口或光接口接入的客户业务,输出是具有G.709 OTUkV帧格式的WDM波长。OTUk称为完全标准化的光通道传送单元,而OTUkV则是功能标准化的光通道传送单元。G.709对OTUk的帧格式有明确的定义,如图4所示: 需要指出的是,对于不同速率的G.709OTUk信号,即OTU1,OTU2,和OTU3具有相同的帧尺寸,即都是44080个字节,但每帧的周期是不同的,这跟SDH的STM-N帧不同。SDHSTM-N帧周期均为125微妙,不同速率的信号其帧的大小是不同的。G.709已经定义了OTU1,OTU2和OTU3的速率,关于OTU4速率的制定还在进行中,尚未最终确定。如表2所示: 当G.709OTN信号经过OTN网络节点接口(NNI)或OTN用户网络接口(UNI)时,OTN的开销就应当被适当终结和再生,图5显示了G.709 OTN信号通过OTN NNI时开销字节的终结情况。标明绿色的字节是透传的开销。标明红色的字节是需要终结和再生的开销。标明黄色的是基于协商而决定终结或透传的开销。标明蓝色的EXP字节是用于自用目的的开销,G.709对其不加以标准化,用户或网络运营商可自行决定如何在自己网络内部运用这个开销,这个开销字节有可能在NNI被覆盖。标明兰绿两色的是跟串连监控(TCM)相关的开销(下面会谈到),根据配置决定终结或透过。 当G.709OTN信号通过OTNUNI时,FTFL(故障类型及故障地点)字节也要终结和再生,其余字节的处理跟信号通过NNI时相同。当非G.709 OTN信号如客户10GbE LAN 信号通过UNI时,则所有的OTN开销及FEC都必须终结。 对G.709OTN承载客户业务如Ethernet、ATM和SDH信号的最基本应用中,至少以下开销字节需要处理: OPUkClient Specific,用来存放速率调整控制字节或虚级联开销字节。 OPUkPayload Structure Identifier (PSI) ,用来监测客户信号类型或负荷结构是否与预期的一致。 ODUkPath Monitoring (PM) ,用来监测通道层的踪迹字节(TTI)、负荷误码(BIP-8)、远端误码指示(BEI)、反向缺陷指示(BDI)及判断当前信号是否是维护信号(ODUk-LCK,ODUk-OCI,ODUk-AIS)等。 OTUkSection Monitoring (SM), 用来监测段层的踪迹字节(TTI)、误码(BIP-8)、远端误码指示(BEI)及反向缺陷指示(BDI)等。 FrameAlignment (FAS, MFAS),帧及复帧定位开销字节。 3.为什么应用G.709OTN G.709OTN作为新一代数字传送网,它究竟能带来哪些益处呢? 1.G.709OTN的透明传送能力 需要业务透明传输的应用越来越多。大部分运营商之间的业务希望能够透传,如移动运营商的业务,来自于其他国家运营商的过境业务,或大的因特网服务提供商的业务。一些数据业务比较集中的大企业客户也希望业务透明传输。用G.709OTN可以做到以下几方面的业务透明传输: 比特透明。例如,当客户信号如SDH/SONET通过OTN传输的时候,除客户信号负荷以外,其开销字节可保持不变(尽管几乎所有的OTN芯片都支持客户信号开销字节的修改),客户信号的完整性得到保持。 定时(Timing)透明。当对恒定速率的客户信号以比特同步映射入OTN帧时,产生的OTN线路信号与客户信号具有相同的定时特性,并将定时特性向下游传送并在解映射时提取出原来的定时信息。即使恒定速率客户信号以异步映射模式被映射入OTN帧,其定时特性通过OTN帧内调整控制字节(JustificationControl Byte)而得以保留,在远端客户信号在解映射时,通过参考OTN帧内调整控制字节,可以将定时信息在一定程度上恢复。 2.支持多种客户信号的封装传送。 今天的网络运营商为了减少在各种业务网络上的运营成本和不必要的投资成本,不得不开始考虑网络融合(Convergence)。每一个网络运营商都试图用尽量少的基础设施来提供尽量多的业务类型。为尽快取得投资回报,传统电信运营商也正试图把居民宽带接入、大企业的数据及视频接入业务集成到已有的语音业务网络中。 G.709OTN帧可以支持多种客户信号的映射,如SDH/SONET,ATM,GFP,虚级联,ODU复用信号,以及自定义速率数据流。这就使得G.709可以传送这些信号格式或以这些信号为载体的更高层次的客户信号如以太网、MPLS、光纤通道、HDLC/PPP、PRP、IP、MPLS、FICON、ESCON及DVBASI视频信号等,这就使得不同应用的客户业务都可统一到一个传送平台上去。更重要的是,G.709OTN是目前业界是唯一的能在IP/以太网交换机和路由器间全速传送10G 以太网业务的传送平台。在目前迅速向以IP/以太网为基础业务架构的演化中,G.709 OTN也越来越成为网络运营商的首选的传送平台。 另外,G.709OTN甚至还具有跟SDH类似的虚级联功能,并能支持LCAS。当然,因为G.709OTN的最低速率是2.5G(OTU1),目前还没有多少业务需要这么大的粒度来做高效地传送,当下一代100G的以太网开始应用时,G.709OTN的虚级联功能可以得到很好的发挥了。 3.交叉连接的可升级性 自从80年代中期以传送语音业务为最初目的的SONET/SDH/SONET数字传送技术开始应用以来,以VC-11/VC-12作为低阶交叉粒度直接支持T1/E1语音信号,而以VC-3/VC-4作为高阶交叉粒度实现对业务工程管理(TrafficEngineering),更高比特率的交叉粒度还没有出现。而今单路数字信号速率已经发展到了40Gbps,例如要实现四个10G SDH支路信号到一路40G SDH线路信号的复用,即使用高阶交叉粒度如VC-4来实现交叉连接,也需要对256个VC-4进行处理。这种复用方案不仅使得硬件设计复杂,而且管理和操作也是一个很大的负担。但OTN为这个例子提供了简单得多的方案,每个10G SDH信号先映射入OTN ODU2中,然后四个ODU2复成一个ODU3,就可以在线路传输了。过程相对比较简单,管理操作也容易得多。 4.强大的带外前向纠错功能(FEC) FEC已经被证明在信噪比受限及色散受限的系统中对提高传输性能是非常有效的,因此传送系统的投资成本也被相应地降低了。FEC降低了信号接收端对入射信号的信噪比的要求。因为在光传输中,光信噪比(OSNR)是个比较容易测量的指标,所以经常以OSNR要求的改善来衡量FEC的效果。总之,FEC带来的好处是: 增加了最大单跨距距离或是跨距的数目,因而可以延长信号的总传输距离。应用FEC加多种放大方案(包括高级拉曼放大,EDFA及遥泵等),技术上已经可以实现16波10G信号传输300公里的距离。 在一个光放输出总功率有限的情况下,可以通过降低每通道光功率来增加光通道数。在线性条件下,降低了单通道光功率也即降低了信号到达通道接收端的OSNR降低了,而FEC又抵消了这个OSNR的降低,使业务仍然以无误码传输。 FEC的出现降低了对器件指标和系统配置的要求。FEC在一定程度上也弥补了信号在传输过程中所经历的损伤所带来的代价。例如当信号经过ROADM或OXC节点的时候,信号经历了比较大的衰减,并增加了一些色散。或当信号的路由在动态变化的时候,不同的路径所带来的信号损伤会有不同,FEC的使用也提高了信号对路径变化的容忍度。 FEC带来的传输性能的改善可以用一个简单的例子加以说明。图6中显示了一个单跨距衰减相同,OA(EDFA)增益及噪声性能相同的单波或多波传送系统。 运用G.692中所提到的经验公式(见图6),假定单通道入纤光功率(Pch)为3.5dBm,每个光放的噪声指数(NF)为6dB,每个跨距损耗(Lspan)为24dB(80km)假设传输是线性的并且传输中色散得到最佳分布补偿,忽略通道间的相互干扰以及通道内的噪声积累,计算得到的传送距离: 对普通的无FEC功能的10GSDH信号来说,假定接收端需要的OSNR为26dB,计算得到最远传送距离为3.55span80km/span=284km。 对具有FEC功能的10G信号来说,假定接收端需要的OSNR为17dB,计算得到的最大传输距离为28.2span80km/span=2240km。 例中的非整数跨距数只是为了给出一个参考性的结果。由此可以看出接收端OSNR要求的不同,导致了系统传送距离的巨大不同。 虽然第二代数字传送网SDH已经支持了前向纠错功能(利用了段开销中的P1和Q1字节,因而是带内FEC),由于SDH帧内存储FEC纠错功能的字节数有限,即便私有开发的(Proprietary)FEC编码所起的作用也是有限的,因而SDH的带内FEC有时也称为弱(Weak)FEC,理论及测试显示,SDH带内FEC打开时在误码率为10-15的水平上比FEC关掉时能提供4dB左右的OSNR净编码增益。OTN的一大特点就是具有很强的前向纠错功能。G.709在完全标准化的光通道传输单元(OTUk)中使用了Reed-SolomonRS (255,239)(简称RS-FEC)算法的FEC,并在每个OTUk帧中使用4256个字节的空间来存放FEC计算信息。RS-FEC在G.975中定义,最初是应用在海底光缆传送应用中,其能在误码率为10-15的水平上提供超过6dB的OSNR净编码增益。同时,G.709在功能标准化的光传送单元(OTUkV)中也支持私有的FEC编码。通常私有的FEC编码比标准的RS-FEC编码具有更强的纠错能力,私有FEC编码有可能使用更多的开销字节存放它们,因而使线路速率增加。不同的私有FEC编码方式可能具有不同的名称,有的叫增强FEC(简称E-FEC),有的叫超级FEC(G.975.1中也定义了一种超级FEC)。私有FEC的应用,使得系统传送能力有了进一步的提高。为兼容性起见,G.709 OTN信号处理芯片一般都同时支持标准的RS-FEC和私有FEC编码方式。图7显示了一种10G OTN 信号(OTU2 V )处理芯片在测试中在不同FEC工作状态下的典型的误码纠错性能,其中入射光功率为-17dBm。结果显示,RS-FEC在误码率为10-15时的OSNR净编码增益约为6dB,E-FEC在误码率为10-15时的OSNR净编码增益约为8dB。测试中使用了商用的Transonder作为光收发器件,由于光学性能的差异及接收端阈值判断点调整能力的不同,使用不同厂家的Transponder测出的FEC编码增益会有一定程度的差别,一些测试结果显示E-FEC的OSNR净编码增益可高达9dB以上。E-FEC的使用,可以使原高达10-3的误码在小于10dB的OSNR情况下,降至10-15以下,可以用来传送电信级业务。考虑到系统的老化和处于恶劣工作环境下传输性能的劣化,在系统铺设时可以考虑加上合理的OSNR余量,比如在使用E-FEC时,可以增加78dB的OSNR的余量(即OSNR为1718dB),以保证系统在整个生命周期内其误码率维持在10-15以下。 FEC检测并纠错的功能使得它可以用来作数字性能监测(DigitalPerformanceMonitoring)。当然,私有FEC的使用也带来了一些小小的不便。不同系统制造商采取的私有FEC格式可能不同,因此不同制造商的设备的传送信号不能互通,好在G.709OTN芯片基本上都支持带有RS-FEC的OTU2标准帧结构,不同厂商设备可在此平面上实现阈间互通。第二,如果私有FEC的支持会带来线路速率的变化,那么硬件设计上就应需要增加相应的时钟源。第三,由于私有FEC为达到更好的纠错效果而大多采用多次迭代解码,客户信号通过FEC处理芯片的时延(Latency)就会增长。RS-FEC解码时引起的时延在十几个微秒左右,测试中观察到前面提到的那种E-FEC引起的时延比RS-FEC可平均增加20微秒左右(收发共40微秒左右)。这个时间尺度对传统的语音业务不会有显著影响,但对一些实时性要求比较强的数据业务、自动保护切换、告警指示信号的产生,就需要加以考虑,尤其是在业务传送链路上有多处FEC编解码时(如在光电再生节点)。最后,对于私有FEC,解码过程中每多一次迭代,都需会更多的功耗,即便采用微米以下的半导体工艺,多次迭代解码使FEC处理芯片所需的功耗可达瓦的量级。 5.串连监控(TandemConnectionMonitoring) 为了便于监测OTN信号跨越多个光学网络时的传输性能,ODUk的开销提供了多达6级的串连监控TCM1-6。TCM1-6字节类似于PM开销字节,用来监测每一级的踪迹字节(TTI)、负荷误码(BIP-8)、远端误码指示(BEI)、反向缺陷指示(BDI)及判断当前信号是否是维护信号(ODUk-LCK,ODUk-OCI,ODUk-AIS)等。 这6个串连监控功能可以以堆叠或嵌套的方式实现,从而允许ODU连接在跨越多个光学网络或管理域时实现任意段的监控。图8给出了应用了4级串连监控的例子。 G.709OTN串连监测的功能,可以做到: qUNI到UNI之间的串连监测。可以监测经过公共传送网的ODUk连接的传输情况(从公共网络的入点到出点)。 qNNI到NNI之间的串连监测。可以监测经过一个网络运营商的网络的ODUk连接的传输情况(从这个网络运营商的网络的入点到出点) q基于串连监测所探测到的信号失效或信号裂化,可以在子网内部触发11,1:1或1:n等各种方式的光通道线性保护切换。 q基于串连监测所探测到的信号失效或信号裂化,也可实现光通道共享保护环的保护切换。 q运用串连监测功能可用来进行故障定位,及业务质量(QoS)的确认。 6.丰富的维护信号(MaintenanceSignal) G.709OTN提供了丰富的维护信号用以进行故障隔离和告警抑制,极大地减轻了系统维护的负担。在图9所示的例子中,客户信号经过3R再生并由G.709OTN承载网传送至远端目的地,并从G.709OTN承载网解映射然后经过3R进入客户设备。这是一个典型的传送网的部分结构,其中的XC有可能是纯光交叉连接,如果传输距离受限的话,也可以先做3R再生再作光交叉连接。 如果在光传送途中发生了光纤断开事故,如图中所示,光纤内传输的每一路光通道都发生了信号丢失(LOS)。如果下游网元就每一路光通道信号丢失都向网管系统报告一个信号丢失告警,那么对于长途密集波分复用传送系统来说,网管系统处理告警的负担是非常重的,而且对同一个原因导致的信号失效,各个网元会重复告警。 在G.709OTN网络中,如在图中所示的地方发生了光纤断开事故,下游第一个再生网元(Repeater)就向下游在光传送段(OTS)发送OTS-PM信号,在光复用段(OMS)发送OMS-PM维护信号。在光复用段终结后,OMS-PM维护信号转变为光通道层OCh-FDI维护信号。在光通道层3R再生时,OCH-FDI维护信号转化为ODUk-AIS维护信号。这样对于一个光纤断开事件,最终可以只上报一个告警给网管系统,光纤断裂处下游的告警均可用维护信号抑制了。 4.结束语 从以上论述来看,G.709OTN作为新一代的传送平台是非常值得关注的。目前,世界上比较大的美国和欧洲网络运营商如Verizon,德国电信等,都已经建立了G.709OTN网络作为新一代的传送平台。 (尹阜琪编辑)OTN技术特点及技术探讨随着电信网向分组化和宽带化发展,All-IP已经成为业务网演进的趋势。根据预测,在未来5年内,带宽将以每年50以上的速度增长,2010年,骨干网截面带宽流量将达到50T以上,其中97%以上为数据流量。带宽流量的飞速增长以及业务的All-IP趋势驱动光传送网进入转折期。作为基础承载网的光传送网,如何顺应All-IP的发展趋势,高效承载IP业务,同时降低网络建设和运维成本,成为运营商在传送网建设中最关注的问题。一个高质量、配置灵活、具有高生存性的传送网已经成为运营商的迫切需求。随着IP承载网所需的电路带宽和颗粒度的不断增大,以VC调度为基础的SDH网络首先在扩展性和效率方面呈现出了明显不足,在光层上直接承载IP的扁平化架构已经成为大势所趋。IP over WDM组网架构对光层设备提出了新的需求,原本由SDH网络完成的组网、端到端电路监控管理和保护功能将逐渐由WDM层面承担。此外,数据业务发展的不确定性要求光层网络具备更多的智能性,以便在网络拓扑及业务分布发生变化时能够快速响应,实现业务的灵活调度。一、OTN技术特点OTN,通常也称为OTH(Optical Transport Hierarchy),是G.872、G.709、G.798等一系列ITU-T的建议所规范的新一代光传送体系。OTN综合了SDH的优点和DWDM的带宽可扩展性,集传送和交换能力于一体,是承载宽带IP业务的理想平台,代表了下一代传送网的发展方向。从电域看,OTN保留了许多SDH的优点,如多业务适配、分级复用和疏导、管理监视、故障定位、保护倒换等。同时OTN扩展了新的能力和领域,例如提供大颗粒的2.5G、10G、40G业务的透明传送,支持带外FEC,支持对多层、多域网络进行级联监视等。从光域看,OTN将光域划分成Och(光信道层)、OMS(光复用段层)、OTS(光传送段层)三个子层,允许在波长层面管理网络并支持光层提供的OAM(运行、管理、维护)功能。为了管理跨多层的光网络,OTN提供了带内和带外两层控制管理开销。OTN的优势主要体现在以下几个方面:(1)从静态的点到点WDM演进成动态的光调度设备SDH之所以能被广泛应用,主要在于它具备大颗粒业务交换能力(如E1或VC4),具有比电话交换机更经济、更易管理的大管道端到端提供能力,大大减少了交换机端口的需求,降低了全网建设成本。如果WDM具备类似SDH的波长/子波长调度能力,并组建一张端到端的WDM承载网络,就可以实现GE、10GE、40G等大颗粒业务端到端快速提供,加快业务开通时间,减少对路由器端口的需求。OTN能提供基于电层的子波长交叉调度和基于光层的波长交叉调度,提供强大的业务疏导调度能力。在电层上,OTN交换技术以2.5G或10G为颗粒,在电层上完成子波长业务调度。采用OTN交换技术的新一代WDM只在传统WDM上增加一个交换单元,增加的成本极少。在光层上,以ROADM实现波长业务的调度,ROADM技术的出现使得WDM能以非常低廉的成本(无OEO转换)完成超大容量的光波长交换。基于子波长和波长的多层面调度,将使WDM网络实现更加精细的带宽管理,提高调度效率及网络带宽利用率,满足客户不同容量的带宽需求,增强网络带宽运营能力。(2)提供快速、可靠的大颗粒业务保护能力电信级业务需要达到50ms的保护倒换时间。在IP+WDM网络中,路由器逻辑路由一般呈Full Mesh状分布,而光纤物理路径则一般呈环或简单的Mesh状,一条物理路径中断可能引起大量IP逻辑路由中断,导致路由器FRR保护恢复时间变长,远远超过50ms。传统电信级IP网中引入SDH层面,一个重要原因就是为了提供50ms的保护恢复时间。基于OTN交换的WDM设备可以实现波长或子波长的快速保护,如1+1、1:1、1:N、Mesh保护,满足50ms的保护倒换时间。(3)多业务透明传送、高效的业务复用封装路由器利用POS端口的SDH开销(Overhead)字节,快速准确地检测线路传输质量,故障后可以快速启动保护倒换。然而,一个POS端口成本是LAN端口的2倍以上,路由器直接出LAN端口可以大大降低网络建设成本。通过提供G.709的OTN接口,WDM传送LAN信号时叠加类似SDH的开销字节,代替了路由器POS端口的开销字节功能,消除了路由器提供POS端口的必要性。此外,OTN提供了任意业务的疏导功能,使IP网络配置更灵活,业务传送更可靠。OTN能接IP、SAN、视频、SDH等业务,并可实现业务的透明传送。(4)良好的运维管理能力OTN定义了丰富的开销字节,使WDM具备同SDH一样的运维管理能力。其中多层嵌套的串联连接监视(TCM)功能,可以实现嵌套、级联等复杂网络的监控。(5)支持控制平面的加载OTN支持GMPLS控制平面的加载,从而构成基于OTN的ASON网络。基于SDH的ASON网络与基于OTN的ASON网络采用同一控制平面,可实现端到端、多层次的智能光网络。二、中兴通讯产品特点中兴通讯的WDM设备全部升级到OTN设备,并提供端到端的IP over WDM解决方案,可以向全球客户提供移动传送、宽带传送、专线业务传送的端到端网络解决方案及网络运营解决方案。中兴通讯WDM系列产品具有以下特性:(1)OTN功能在中兴通讯的IP over WDM架构下,WDM产品光层采用G.709接口,并且引入OTN的开销功能,提供光传送网的可管理性和互通性。G.709 OTN提供了丰富的开销,使得光层具有强大的管理能力,OTN的维护信号可以用于进行故障隔离和告警抑制,大大减低系统维护的负担。(2)子波长灵活调度能力在中兴通讯的IP over WDM架构下,WDM产品通过General Service Switch Platform (GSS)系统支持子波长调度。GSS系统能实现子波长的交叉调度,引入了强大的电层交叉能力,提供中继及波长转换功能,上下的业务和穿通业务可以占用同一波长里的不同子波长进行业务传送,最大限度减少穿通波长,节省了波长,降低了运营商的投入成本。(3)多维ROADM功能 中兴通讯WDM产品支持29维的ROADM,采用WB、PLC、WSS技术,支持colored/colorless、方向相关性/无关性等多种解决方案,可根据运营商不同的需求给出相应的解决方案,如图1所示。ROADM提供节点的重构能力,在无需人工现场调配的情况下实现任意两点间的连接和波长级的上下路及直通配置,有效满足业务需要,降低了运营和维护成本。此外,结合ULH WDM技术,可大大减少全波段的业务终结和不必要的光电再生,实现整个网络的灵活扩展,有效节省了设备投资。采用ROADM,可以实现多环、网状网以及星型的灵活组网能力,快速适应未来业务网的动态特性和组网需求。(4)可靠高效的保护波分系统的保护方式大致有以下三种:基于单个光通道的保护、基于光复用段的保护和基于环网的保护。中兴通讯在此基础上提供六种保护方式,是业界提供光层保护方式最多的厂商。其中双纤光通道共享保护是中兴通讯的专利,是面向WDM网络光层保护应用提出的一种高效的保护方式,协议设计上主要借鉴参照了SDH网络环网保护的G.841、G.842标准和通用保护倒换标准G.808.2,目前已写入ITU-T G.808.2标准。双纤光通道共享保护属于共享式光通道保护,保护通道在正常情况下可以传送低优先级的业务。相比通道1+1保护,双纤光通道共享保护能大大提高网络波长资源的利用率,节省波长,从而节省运营商成本。三、结束语业务的All-IP化已经成为不可阻挡的趋势,网络带宽也随之越来越高。ROADM/OTN交换技术的出现,使得新一代WDM能够组建端到端大颗粒业务承载网络,有效降低网络建设的总成本。中兴通讯的WDM设备已全面升级到OTN设备,其IP over WDM解决方案基于OTN功能,提供子波长/波长的灵活调度,提供高效可靠的保护,是大颗粒宽带业务承载模式的最佳选择,减少了承载网的中间层次,降低了网络的复杂度,使承载网更加简洁、高效;大大降低了网络的运维复杂度,降低了维护成本;同时,网络升级扩容更方便,可大幅降低网络的升级扩容成本。OTN技术发展与应用探讨1OTN技术概述 近年来,通信网络所承载的业务发生了巨大的变化。数据业务发展非常迅速,特别是宽带、IPTV、视频业务的发展,对运营商的传送网络提出了新的要求。传送网络要能够提供适应这种增长的海量带宽,更重要的是要求传送网络可以进行快速灵活的业务调度,完善便捷的网络维护管理(OAM功能),以适应业务的需求。目前传送网使用的主要是SDH和WDM技术,但这2种技术都存在着一定的局限性。 SDH技术偏重于业务的电层处理,具有灵活的调度、管理和保护能力,OAM功能完善。但是,它以VC4为基本交叉调度颗粒,采用单通道线路,容量增长和调度颗粒大小受到限制,无法满足业务的快速增长。WDM技术以业务的光层处理为主,多波长通道的传输特性决定了它具有提供大容量传输的天然优势。但是,目前的WDM网络主要采用点对点的应用方式,缺乏有效的网络维护管理手段。纯光调度系统(如ROADM)虽然可实现类似于SDH的调度和保护功能,但由于物理受限和波长受限问题,很难在大范围网络中应用。而且颗粒度单一,灵活性差,不能实现不同厂家设备的互通。 而OTN技术包括了光层和电层的完整体系结构,各层网络都有相应的管理监控机制,光层和电层都具有网络生存性机制,从而可以解决上述存在的问题。OTN技术可以提供强大的OAM功能,并可实现多达6级的串联连接监测(TCM)功能,提供完善的性能和故障监测功能。OTN设备基于ODUk的交叉功能使得电路交换粒度由SDH的155M提高到2.5G/10G/40G,从而实现大颗粒业务的灵活调度和保护。OTN设备还可以引入基于ASON的智能控制平面,提高网络配置的灵活性和生存性。 ITUT在2000年前后已经制定了多个OTN技术相关的标准,建立了比较完善的OTN标准体系。但由于传输的业务已经从最初的SDH信号为主发展到IP/Ethernet业务为主,相关OTN标准也在修订当中。目前OTN的标准化工作主要集中在以下几个方面。 a)适应FC/GE等低速信号传送的帧结构,如最近提出的ODU0。 b)透明的10GE-LAN的传送,如OTU2e超频方式等。 c)更高速的40GE/100GE信号的传送,如正在定义的ODU4。 d)ODUk共享保护环。 e)多种FEC的应用导致的互联互通问题。 2OTN技术的优势 2.1多种客户信号封装和透明传输 OTN可以支持多种客户信号的透明传送,如SDH、GE和10GE等。OTN定义的OPUk容器传送客户信号时不更改其净荷和开销信息,而其采用的异步映射模式保证了客户信号定时信息的透明。 10GE接口相对于10GPOS接口具有很大的成本优势,路由器采用10GE接口可以大大降低网络建设成本。而目前基于SDH的WDM系统主要是针对SDH信号的传送,无法实现对10GELAN信号的透明传送。因此,WDM系统引入OTN接口是路由器采用10GE接口的前提条件。 2.2大颗粒调度和保护恢复 OTN技术提供3种交叉颗粒,即ODU1(2.5Gbit/s)、ODU2(10Gbit/s)和ODU3(40Gbit/s)。高速率的交叉颗粒具有更高的交叉效率,使得设备更容易实现大的交叉连接能力,降低设备成本。经过测算,基于OTN交叉设备的网络投资将低于基于SDH交叉设备的网络投资。在OTN大容量交叉的基础上,通过引入ASON智能控制平面,可以提高光传送网的保护恢复能力,改善网络调度能力。 2.3完善的性能和故障监测能力 目前基于SDH的WDM系统只能依赖SDH的B1和J0进行分段的性能和故障监测。当一条业务通道跨越多个WDM系统时,无法实现端到端的性能和故障监测,以及快速的故障定位。 而OTN引入了丰富的开销,具备完善的性能和故障监测机制。OTUk层的段监测字节(SM)可以对电再生段进行性能和故障监测;ODUk层的通道监测字节(PM)可以对端到端的波长通道进行性能和故障监测。从而使WDM系统具备类似SDH的性能和故障监测能力。 OTN还可以提供6级连接监视功能(TCM),对于多运营商/多设备商/多子网环境,可以实现分级和分段管理。适当配置各级TCM,可以为端到端通道的性能和故障监测提供有效的监视手段,实现故障的快速定位。 因此在WDM系统中引入OTN接口,可以实现对波长通道端到端的性能和故障监测,而不需要依赖于所承载的业务信号(SDH/10GE等)的OAM机制。从而使基于OTN的WDM网络成为一个具备OAM功能的独立传送网。 2.4FEC能力 G.709为OTN帧结构定义了标准的带外FEC纠错算法,FEC校验字节长达4256字节,使用RS(255,239)算法,可以带来最大6.2dB(BER10-15)编码增益,降低OSNR容限,延长电中继距离,减少系统站点个数,降低建网成本。G.975.1定义了非标准FEC,进一步提高了编码增益,实现更长距离的传送,但是因为多种编码方式不能兼容,不利于不同厂家设备的对接,通常只能应用于IaDI接口互联。 3OTN设备形态和发展现状 OTN设备应具备客户接口、接口适配、线路接口处理等功能,OTN设备存在以下几种形态。 3.1OTN终端复用设备 OTN终端复用设备即支持OTN接口的WDM设备,这里的OTN接口包括线路接口和支路接口(也称为业务接口或域间互联接口)。用于域间互联的OTNIrDI接口的FEC应采用G.709定义的标准FEC,或者关闭FEC方式。采用白光OTUk接口用于不同厂家传送设备的互联,代替传统传送设备采用SDH和以太网等客户业务接口对接的方式,可以实现对波长通道端到端的性能和故障监测。 目前主流厂家的波分系统在线路侧已基本上采用了OTN结构,并均已支持符合G.709标准的OTN接口,因此都属于OTN终端复用设备。图1示出的是OTN终端复用设备功能模型。3.2OTN电交叉设备 类似于现在的SDH交叉设备,OTN电交叉设备完成ODUk级别的电路交叉功能,为OTN网络提供灵活的电路调度和保护能力。OTN电交叉设备可以独立存在,类似于SDHDXC设备,对外提供各种业务接口和OTUk接口(包括IrDI接口)。也可以与OTN终端复用功能集成在一起,同时提供光复用段和光传输段功能,支持WDM传输。 Infinera公司的DTNWDM设备就是一种集成了OTN终端复用功能的OTN电交叉设备,支持ODU1级别的交叉,交叉容量为400G,还支持GMPLS控制协议。图2示出的是OTN电交叉设备的功能模型。 3.3OTN光电混合交叉设备 OTN电交叉设备可以与OCh交叉设备(ROADM或PXC)相结合,同时提供ODUk电层和OCh光层调度能力。波长级别的业务可以直接通过OCh交叉,其他需要调度的业务经过ODUk交叉。两者配合可以优势互补,又同时规避各自的劣势。这种大容量的调度设备就是OTN光电混合交叉设备。 这种设备的一个典型产品就是华为推出的OSN6800设备,该设备同时支持基于ROADM的OCh交叉和ODU1/GE交叉,其中ODU1交叉容量为320G,支持ASON控制平面。其他厂家如烽火和中兴通讯也在开发类似的产品。图3示出的是OTN光电混合交叉调度设备的功能模型。 4OTN应用方式探讨 基于OTN设备存在的不同形态,OTN在网络建设中也存在着不同的应用方式。下面就对OTN的几种应用方式进行探讨。 4.1波分系统的全OTN化 根据对国内外厂家设备的调研,目前主流厂家的波分系统在线路侧已基本上采用了OTN结构,并均已支持符合G.709标准的OTN接口,可以实现不同系统的互通。多数厂家支持STM-64/OTU2信号的网管指配选择,便于实现OUT应用方式的选择(上下业务或中继)。 在WDM系统中引入OTN接口,可以实现对波长通道端到端的性能和故障监测。OTN可以实现对多种客户信号的透明传送,是路由器采用10GE接口的前提条件。逐步在WDM系统中引入OTN接口,可以为未来引入大容量的OTN交叉设备做准备。 因此,标准OTN域间互通接口将是未来波分系统进行互通的主要接口形式。建议在今后的长途WDM系统建设中提出对符合G.709标准OTN接口支持的要求,要求提供标准域间互通接口OTU2(10Gbit/s)。 4.2OTN交叉设备在长途骨干网的应用 随着长途IP网的发展,IP业务量的激增,长途骨干网的核心节点面临着越来越大的业务量。而且为了更有效地使用IP网络资源,提高中继电路的利用率或提高网络运行质量,在长途骨干网中应用大容量的OTN交叉设备是必要的。利用大容量OTN交叉设备,可以实现大颗粒波长通道业务的快速开通,提高业务响应速度。加载了ASON智能控制平面后,还可以提供基于ASON的多种保护恢复方式,提高骨干传送网的可靠性。 同时,引入OTN交叉设备可以优化现有IP网络的组网结构,大幅度节省路由器组建IP承载网络的成本。其应用方式为:IP网络的转接业务不再进入路由器实现中转,而是通过OTN设备在传输层直接完成转接,从而节约路由器的接口数量并降低对路由器容量的要求。OTN设备提供的灵活保护恢复机制可以有效解决IP网络中继电路故障问题,提高网络生存性,可以减少全部依赖路由器保护场景下的链路冗余要求,提高链路利用率,降低IP网络的建设成本。 4.3OTN交叉设备在城域网的应用 城域网中的情况比较复杂,相应的竞争技术也比较多。为了提高光纤利用率,在城域网/本地网中建设波分系统是必然的,基于波长级颗粒调度的OADM/ROADM是目前比较切合实际的选择。但对于子波长颗粒GE、2.5G等业务,OADM/ROADM并不是一种很好的解决办法。加之它本身存在的波长受限、恢复速度慢等缺陷,该方式需要与其他技术配合应用才可以实现城域网的多方面需求。 在城域网中采用OTN交叉设备,由OADM/ROADM实现波长级的调度和保护,由OTN交叉设备完成子波长级(GE,2.5Gbit/s)的调度和保护是一种比较可行的应用方式(见图4)。 同时,还需要结合业务的未来发展情况,与其他正在发展中的城域网传送技术(如T-MPLS和PBT等)进行进一步的技术对比和成本分析,以便选择适合的建网方式。 5OTN与现有传送网络的关系 5.1OTN与现有SDH网络的关系 国内运营商的现网部署有大量的SDH网络,包括线性系统、环网系统、1+1MSP系统和基于ASON的网状网等。未来OTN网络与SDH网络可以有以下2种共存关系。 a)相互独立关系:OTN网络与SDH网络独立运行,承载不同类型的业务,原则上SDH网络仅用于承载小颗粒业务(小于GE),大颗粒业务(GE及以上颗粒)推荐直接用OTN承载。 b)客户服务关系:适用于OTN线路速率高于SDH线路速率的情况,可以提高链路资源的利用率;同时利用OTN网络的调度和保护能力,可以提高SDH系统的生存性。 基于SDH的ASON与OTN网络在传送平面的关系与传统SDH网络一致,当OTN具备智能控制平面(称为基于OTN的ASON),两者的智能控制平面应该支持互通,在客户服务模型中还应该具备跨层次的保护恢复功能协调机制。 5.2OTN与现有WDM网络的关系 国内现网部署有大量的WDM网络,这些WDM系统主要是线性系统,个别地区部署了少量固定OADM或者ROADM节点组成环网系统。 由于早期技术限制,已经部署的传统WDM网络调度能力较差,虽然也采用了G.709封装结构,但是目前系统对接都是采用客户接口,OTN具有的强大OAM功能没有得到应用。未来WDM网络应该向基于OTN的WDM网络发展。首先应该完善WDM设备对OTN开销的处理能力,并采用OTUk白光口进行系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CI 455-2024新能源汽车电池用液冷系统
- 2025年汽车制造业新能源汽车技术发展与市场前景研究报告
- 2025年智能家居市场前景及发展方向研究报告
- 2025年绿色环保产业发展前景研究报告
- 2025年智能家居行业可穿戴设备应用与前景展望报告
- 2025年机器人行业机器人服务市场前景研究报告
- 2025年生物科技行业生物医学工程在康复医学中的应用前景研究报告
- 2025年智能网联汽车行业自动驾驶技术发展与市场前景研究报告
- 2025年虚拟现实产业发展前景报告
- 商场冬季用电安全培训课件
- 电梯从业证考试试题及答案解析
- 第九讲 全面依法治国PPT习概论2023优化版教学课件
- 新媒体文案写作PPT完整全套教学课件
- 《细胞》PPT课件-完美版
- 托育园厨师安全工作责任书
- 《编程猫系列》第1课-Hello-编程猫(课件)
- GB 16899-2011自动扶梯和自动人行道的制造与安装安全规范
- 非典型骨折课件
- 封闭区倒塌围墙修复施工方案
- 户口本翻译样本-Word范文-Word范文
- 企业融资计划书2022
评论
0/150
提交评论