




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一维函数一维单峰函数一维多峰单全局最优解函数一维多峰多局部最优解函数2、二维函数2.1二维单峰函数2.2 二维多峰单全局最优解函数2.2.1 SHUBERT FUNCTIONDescription:Dimensions: 2 The Shubert function has several local minima and many global minima. The second plot shows the the function on a smaller input domain, to allow for easier viewing. Input Domain:The function is usually evaluated on the square xi -10, 10, for all i = 1, 2, although this may be restricted to the square xi -5.12, 5.12, for all i = 1, 2. Global Minimum:Schwefel Function2.2.2 EGGHOLDER FUNCTIONDescription:Dimensions: 2 The Eggholder function is a difficult function to optimize, because of the large number of local minima. Input Domain:The function is usually evaluated on the square xi -512, 512, for all i = 1, 2. Global Minimum:2.2.3 Levy 5 test objective function.This class defines the Levy 5 global optimization problem. This is a multimodal minimization problem defined as follows:Here, represents the number of dimensions and for .Two-dimensional Levy 5 functionGlobal optimum: for .2.2.4 LANGERMANN FUNCTIONDescription:Dimensions: d The Langermann function is multimodal, with many unevenly distributed local minima. The recommended values of m, c and A, as given by Molga & Smutnicki (2005) are (for d = 2): m = 5, c = (1, 2, 5, 2, 3) and:Input Domain:The function is usually evaluated on the hypercube xi 0, 10, for all i = 1, , d. Global optimum: for class go_benchmark.XinSheYang01(dimensions=2)2.2.5 Xin-She Yang 1 test objective function.This class defines the Xin-She Yang 1 global optimization problem. This is a multimodal minimization problem defined as follows:The variable is a random variable uniformly distributed in .Here, represents the number of dimensions and for .Two-dimensional Xin-She Yang 1 functionGlobal optimum: for for 2.2.6 XinSheYang02(dimensions=2)Xin-She Yang 2 test objective function.This class defines the Xin-She Yang 2 global optimization problem. This is a multimodal minimization problem defined as follows:Here, represents the number of dimensions and for .Two-dimensional Xin-She Yang 2 functionGlobal optimum: for for 2.2.7 XinSheYang03(dimensions=2)Xin-She Yang 3 test objective function.This class defines the Xin-She Yang 3 global optimization problem. This is a multimodal minimization problem defined as follows:Where, in this exercise, and .Here, represents the number of dimensions and for .Two-dimensional Xin-She Yang 3 functionGlobal optimum: for for 2.2.8 XinSheYang04(dimensions=2)Xin-She Yang 4 test objective function.This class defines the Xin-She Yang 4 global optimization problem. This is a multimodal minimization problem defined as follows:Here, represents the number of dimensions and for .Two-dimensional Xin-She Yang 4 functionGlobal optimum: for for 2.2.9 Damavandi(dimensions=2)Damavandi test objective function.This class defines the Damavandi global optimization problem. This is a multimodal minimization problem defined as follows:Here, represents the number of dimensions and for .Two-dimensional Damavandi functionGlobal optimum: for for class go_benchmark.SineEnvelope(dimensions=2)SineEnvelope test objective function.This class defines the SineEnvelope global optimization problem. This is a multimodal minimization problem defined as follows:Here, represents the number of dimensions and for .Two-dimensional SineEnvelope functionGlobal optimum: for for 2.3 二维多峰多全局最优解函数3、多维函数3.1多维单峰函数3.2多维多峰单全局最优解函数3.2.1 Ackley3.2.2 MICHALEWICZ FUNCTIONDescription:Dimensions: d The Michalewicz function has d! local minima, and it is multimodal. The parameter m defines the steepness of they valleys and ridges; a larger m leads to a more difficult search. The recommended value of m is m = 10. The functions two-dimensional form is shown in the plot above. Input Domain:The function is usually evaluated on the hypercube xi 0, , for all i = 1, , d. Global Minima:多维多峰多局部最优解函数STYBLINSKI-TANG FUNCTIONDescription:Dimensions: d The Styblinski-Tang function is shown here in its two-dimensional form. Input D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025北京市高校毕业生到农村从事支农工作招聘473人考前自测高频考点模拟试题及1套参考答案详解
- 2025昆明市五华区第三幼儿园教育集团招聘(2人)模拟试卷及答案详解(新)
- 2025年上半年山东铁投集团校园招聘、社会公开招聘165人考前自测高频考点模拟试题及答案详解(有一套)
- 2025北京市场监管总局直属单位招聘210人模拟试卷及完整答案详解1套
- 2025年河北承德医学院附属医院招聘工作人员20名模拟试卷及答案详解一套
- 2025广东连平县田源镇人民政府招聘编外人员1人模拟试卷及一套完整答案详解
- 2025内蒙古通辽市扎鲁特旗教体系统事业单位招聘30人模拟试卷附答案详解(黄金题型)
- 生物酶催化绿色合成-洞察与解读
- 2025内蒙古巴彦淖尔市临河区第三人民医院招聘部分人员3人模拟试卷含答案详解
- 2025黑龙江绥化市明水县人民医院招聘中医医生考前自测高频考点模拟试题含答案详解
- 十五五住房和城乡建设发展思路
- 马克思主义经典原著选读-1
- 医用废弃口罩管理制度
- T/CUWA 60055-2023城镇排水管道螺旋缠绕内衬法修复用硬聚氯乙烯(PVC-U)带状型材
- 《职业生涯概述》课件
- 企业会计准则实施典型案例
- 高考英语一轮专项复习:高考试题中的熟词生义(含解析)
- 混凝土路面裂缝修补施工方案
- (2025春新版)北师大版七年级数学下册《-整式的乘法》课件
- 实习生转正述职报告
- 《全新观光车操作与安全培训课件》
评论
0/150
提交评论