函数的奇偶性.doc_第1页
函数的奇偶性.doc_第2页
函数的奇偶性.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题1.3.2函数的奇偶性【新课学习】阅读和思考教材33-35的内容和问题1.偶函数的定义一般地,如果对于函数的定义域内任意一个,都有,那么f(x)就叫做偶函数注意:偶函数的图象关于y轴对称. 反过来,如果一个函数的图象关于y轴对称,那么就称这个函数为偶函数.2.奇函数的定义一般地,如果对于函数的定义域内的任意一个,都有,那么叫做奇函数注意:(1)、奇函数的图象关于原点对称.反过来,如果一个函数的图象关于原点对称,那么就称这个函数为奇函数.()、由函数的奇偶性定义可知,对于定义域内的任意一个,则x也一定是定义域内的一个自变量(即定义域关于原点对称)【经典例题】【例1】判断下列函数的奇偶性(1) (2)(3) (4)1用定义判断函数奇偶性的步骤是(1)、先求定义域,看是否关于原点对称;(2)、再判断 或 是否恒成立;(3)、作出相应结论.2 函数按是否有奇偶性可分为四类:奇函数; 偶函数; 既是奇函数又是偶函数; 既不是奇函数又不是偶函数.3 奇偶函数图象的性质(1)、奇函数的图象关于原点对称.反过来,如果函数的图象关于原点对称,那么就称这个函数为奇函数.(2)、偶函数的图象关于y轴对称.反过来,如果函数的图象关于y轴对称,那么就称这个函数为偶函数.规律:偶函数的图象关于y轴对称;奇函数的图象关于原点对称【例2】变式:判断下列函数的奇偶性(1) (2)(3) (4)(5)【例3】. 已知:函数f(x)是偶函数,且在(,0)上是减函数,判断f(x)在(0,)上是增函数,还是减函数,并证明你的结论思考:奇函数或偶函数在关于原点对称的两个区间上的单调性有何关系?【例4】. 函数f(x)ax2bxc,(a,b,cR),当a,b,c满足什么条件时,(1)函数f(x)是偶函数(2)函数f(x)是奇函数【例5已知:定义在R上的函数f(x)是奇函数,当x0时,f(x)x(1x),求f(x)的表达式【针对训练】一.教材36页练习1,2二.1判断下列函数的奇偶性:2. 有既是奇函数,又是偶函数的函数吗?若有,举出一个?3. 设f(x),g(x)分别是R上的奇函数,偶函数,试研究:(1)F(x)f(x)g(x)的奇偶性(2)G(x)f(x)g(x)的奇偶性【练习检测】1、已知:函数f(x)是奇函数,在a,b上是增函数(ba0),问f(x)在b,a上的单调性如何2. 已知且,那么_。3.已知是奇函数,当时,求当时,的表达式。R上的函数f(x)满足对任意x,yR都有f(x+y)=f(x)+f(y),求证:f(x)为奇函数4. 判断函数的奇偶性。5. 设f(x),g(x)分别是R上的奇函数和偶函数,并且f(x)g(x)x(x1),求f(x),g(x)的解析式6.若y(m1)x22mx3是偶函数,则m_7.若y(m1)x22mx3是偶函数,则m_【归纳小结】1、两个定义:对于f(x)定义域内的任意一个x, 如果都有 为奇函数 如果都有 为偶函数2、两个性质: 一个函数为奇函数 它的图象关于原点对称 一个函数为偶函数 它的图象关于y轴对称3、用定义判断函数奇偶性的步骤是(1)、先求定义域,看是否关于原点对称;(2)、再判断 或 是否恒成立;(3)、作出相应结论.【课后作业】教材39习题A6 教材44页A103

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论