




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数压轴题专题26. (2014益阳,第20题,10分)如图,直线y=3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长(第3题图)考点:二次函数综合题分析:(1)先求出直线y=3x+3与x轴交点A,与y轴交点B的坐标,再将A、B两点坐标代入y=a(x2)2+k,得到关于a,k的二元一次方程组,解方程组即可求解;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E在RtAQF与RtBQE中,用勾股定理分别表示出AQ2=AF2+QF2=1+m2,BQ2=BE2+EQ2=4+(3m)2,由AQ=BQ,得到方程1+m2=4+(3m)2,解方程求出m=2,即可求得Q点的坐标;(3)当点N在对称轴上时,由NC与AC不垂直,得出AC为正方形的对角线,根据抛物线的对称性及正方形的性质,得到M点与顶点P(2,1)重合,N点为点P关于x轴的对称点,此时,MF=NF=AF=CF=1,且ACMN,则四边形AMCN为正方形,在RtAFN中根据勾股定理即可求出正方形的边长解答:解:(1)直线y=3x+3与x轴、y轴分别交于点A、B,A(1,0),B(0,3)又抛物线抛物线y=a(x2)2+k经过点A(1,0),B(0,3),解得,故a,k的值分别为1,1;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E在RtAQF中,AQ2=AF2+QF2=1+m2,在RtBQE中,BQ2=BE2+EQ2=4+(3m)2,AQ=BQ,1+m2=4+(3m)2,m=2,Q点的坐标为(2,2);(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线又对称轴x=2是AC的中垂线,M点与顶点P(2,1)重合,N点为点P关于x轴的对称点,其坐标为(2,1)此时,MF=NF=AF=CF=1,且ACMN,四边形AMCN为正方形在RtAFN中,AN=,即正方形的边长为34.(2014德州,第24题12分)如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上(1)求抛物线的解析式;(2)是否存在点P,使得ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作y轴的垂线垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标考点:二次函数综合题分析:(1)根据A的坐标,即可求得OA的长,则B、C的坐标即可求得,然后利用待定系数法即可求得函数的解析式;(2)分点A为直角顶点时,和C的直角顶点两种情况讨论,根据OA=OC,即可列方程求解;(3)据垂线段最短,可得当ODAC时,OD最短,即EF最短,根据等腰三角形的性质,D是AC的中点,则DF=OC,即可求得P的纵坐标,代入二次函数的解析式,即可求得横坐标,得到P的坐标解答:解:(1)由A(4,0),可知OA=4,OA=OC=4OB,OA=OC=4,OB=1,C(0,4),B(1,0)设抛物线的解析式是y=ax2+bx+x,则,解得:,则抛物线的解析式是:y=x2+3x+4;(2)存在第一种情况,当以C为直角顶点时,过点C作CP1AC,交抛物线于点P1过点P1作y轴的垂线,垂足是MACP1=90,MCP1+ACO=90ACO+OAC=90,MCP1=OACOA=OC,MCP1=OAC=45,MCP1=MP1C,MC=MP1,设P(m,m2+3m+4),则m=m2+3m+44,解得:m1=0(舍去),m2=2m2+3m+4=6,即P(2,6)第二种情况,当点A为直角顶点时,过A作AP2,AC交抛物线于点P2,过点P2作y轴的垂线,垂足是N,AP交y轴于点FP2Nx轴,由CAO=45,OAP=45,FP2N=45,AO=OFP2N=NF,设P2(n,n2+3n+4),则n=(n2+3n+4)1,解得:n1=2,n2=4(舍去),n2+3n+4=6,则P2的坐标是(2,6)综上所述,P的坐标是(2,6)或(2,6);(3)连接OD,由题意可知,四边形OFDE是矩形,则OD=EF根据垂线段最短,可得当ODAC时,OD最短,即EF最短由(1)可知,在直角AOC中,OC=OA=4,则AC=4,根据等腰三角形的性质,D是AC的中点又DFOC,DF=OC=2,点P的纵坐标是2则x2+3x+1=2,解得:x=,当EF最短时,点P的坐标是:(,0)或(,0)二次函数y=ax2+bx+c的图象经过点(1,4),且与直线y=x+1相交于A、B两点(如图),A点在y轴上,过点B作BCx轴,垂足为点C(3,0)(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NPx轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标解:(1)由题设可知A(0,1),B(3,),根据题意得:,解得:,则二次函数的解析式是:y=x+1;(2)设N(x,x2x+1),则M、P点的坐标分别是(x,x+1),(x,0)MN=PNPM=x2x+1(x+1)=x2x=(x+)2+,则当x=时,MN的最大值为;(3)连接MN、BN、BM与NC互相垂直平分,即四边形BCMN是菱形,由于BCMN,即MN=BC,且BC=MC,即x2x=,且(x+1)2+(x+3)2=,解得:x=1,故当N(1,4)时,MN和NC互相垂直平分16(2014四川广安,第26题10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(4,0),B(1,0)两点(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DFx轴于点H,交QC于点F请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由考点:二次函数综合题分析:(1)利用待定系数法求出抛物线的解析式;(2)本问需结合菱形、平行四边形的性质来进行分析如答图21,作辅助线,求出点D的坐标,进而判断平行四边形ODAE是否为菱形;本问为存在型问题如答图22,作辅助线,构造相似三角形,利用比例式,列出一元二次方程,求得点D的坐标解答:解:(1)把点A(4,0)、B(1,0)代入解析式y=ax2+bx+3,得,解得,抛物线的解析式为:y=x2+x+3(2)如答图21,过点D作DHx轴于点HSODAE=6,OA=4,SAOD=OADH=3,DH=因为D在第三象限,所以D的纵坐标为负,且D在抛物线上,x2+x+3=,解得:x1=2,x2=3点D坐标为(2,)或(3,)当点D为(2,)时,DH垂直平分OA,平行四边形ODAE为菱形;当点D为(3,)时,ODAD,平行四边形ODAE不为菱形假设存在如答图22,过点D作DMCQ于M,过点C作CNDF于N,则DM:CN=:2设D(m, m2+m+3)(m0),则F(m, m+3)CN=m,NF=mCF=mDMF=CNF=90,DFM=CFN,DMFCNF,DF=CF=mDN=NF+DF=mm=m又DN=3(m2+m+3)=m2m,m2m=m解得:m=或m=0(舍去)m2+m+3=D(,)综上所述,存在满足条件的点D,点D的坐标为(,)20(2014重庆A,第25题12分)如图,抛物线y=x22x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQAB交抛物线于点Q,过点Q作QNx轴于点N若点P在点Q左边,当矩形PQMN的周长最大时,求AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方)若FG=2DQ,求点F的坐标解答:解:(1)由抛物线y=x22x+3可知,C(0,3),令y=0,则0=x22x+3,解得x=3或x=1,A(3,0),B(1,0)(2)由抛物线y=x22x+3可知,对称轴为x=1,设M点的横坐标为m,则PM=m22m+3,MN=(m1)2=2m2,矩形PMNQ的周长=2(PM+MN)=(m22m+32m2)2=2m28m+2=2(m+2)2+10,当m=2时矩形的周长最大A(3,0),C(0,3),设直线AC解析式为;y=kx+b,解得k=1,b=3,解析式y=x+3,当x=2时,则E(2,1),EM=1,AM=1,S=AMEM=(3)M点的横坐标为2,抛物线的对称轴为x=1,N应与原点重合,Q点与C点重合,DQ=DC,把x=1代入y=x22x+3,解得y=4,D(1,4)DQ=DC=,FC=2DQ,FG=4,设F(n,n22n+3),则G(n,n+3),|n22n+3|n+3|=4,即n2+2n3+n+3=4,解得:n=4或n=1,F(4,5)或(1,0)31. (2014乐山,第27题13分)如图,抛物线y=x22mx(m0)与x轴的另一个交点为A,过P(1,m)作PMx轴与点M,交抛物线于点B点B关于抛物线对称轴的对称点为C(1)若m=2,求点A和点C的坐标;(2)令m1,连接CA,若ACP为直角三角形,求m的值;(3)在坐标轴上是否存在点E,使得PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由考点:二次函数综合题.分析:(1)令y=0即可求得A点坐标,令x=1求得B点,根据对称轴的性质即可求得C点的坐标(2)分别求出PA、PC、AC的平方,根据勾股定理的逆定理即可求得m的值,(3)先求出PC的斜率,根据互为垂直的两直线的斜率互为负倒数求出直线PE的斜率,然后求出解析式,分别求出与x轴的交点和与y轴的交点,从而求出PE的长,然后判断PE2是否等于PC2即可解答:解:(1)若m=2,抛物线y=x22mx=x24x,对称轴x=2,令y=0,则x24x=0,解得x=0,x=4,A(4,0),P(1,2),令x=1,则y=3,B(1,3),C(3,3)(2)抛物线y=x22mx(m0),A(2m,0)对称轴x=m,P(1,m)令x=1,则y=12m,B(1,12m),C(2m1,12m),PA2=(m)2+(2m1)2=5m24m+1,PC2=(2m2)2+(1m)2=5m210m+5AC2=1+(12m)2=24m+4m2,ACP为直角三角形,PA2=PC2+AC2,即5m24m+1=5m210m+5+24m+4m2,整理得:2m25m+6=0,解得:m=,m=1(舍去),故m=(3)P(1,m),C(2m1,12m),设直线PC的解析式为y=kx+b,解得:k=,PEPC,直线PE的斜率=2,设直线PE为y=2x+b,m=2+b,解得b=2m,直线PE:y=2x2m,令y=0,则x=1,E(1m,0),PE2=(m)2+(2m)2=PC2在x轴上不存在E点,令x=0,则y=2m,E(0,2m)PE2=(22m)2+12PC2,y轴上不存在E点,故坐标轴上不存在点E,使得PEC是以P为直角顶点的等腰直角三角形4. (2014山东枣庄,第25题10分)如图,在平面直角坐标系中,二次函数y=x22x3的图象与x轴交于A、B两点,与y轴交于点C,连接BC,点D为抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合) (1)求OBC的度数;(2)连接CD、BD、DP,延长DP交x轴正半轴于点E,且SOCE=S四边形OCDB,求此时P点的坐标;(3)过点P作PFx轴交BC于点F,求线段PF长度的最大值9.如图,直线y=x+2与抛物线y=ax2+bx+6(a0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PCx轴于点D,交抛物线于点C(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求PAC为直角三角形时点P的坐标考点:二次函数综合题分析:(1)已知B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值(2)要弄清PC的长,实际是直线AB与抛物线函数值的差可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值(3)根据直线AB的解析式,可求得直线AC的解析式y=x+b,已知了点A的坐标,即可求得直线AC的解析式,联立抛物线的解析式,可求得C点的坐标;解答:解:(1)B(4,m)在直线线y=x+2上,m=4+2=6,B(4,6),A(,)、B(4,6)在抛物线y=ax2+bx4上,c=6,a=2,b=8,y=2x28x+6(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n28n+6),PC=(n+2)(2n28n+6),=2n2+9n4,=2(n)2+,PC0,当n=时,线段PC最大且为(3)设直线AC的解析式为y=x+b,把A(,)代入得: =+b,解得:b=3,直线AC解析式:y=x+3,点C在抛物线上,设C(m,2m28m+6),代入y=x+3得:2m28m+6=m+3,整理得:2m27m+3=0,解得;m=3或m=,P(3,0)或P(,)21. (2014年山东东营,第25题12分)如图,直线y=2x+2与x轴交于点A,与y轴交于点B,把AOB沿y轴翻折,点A落到点C,过点B的抛物线y=x2+bx+c与直线BC交于点D(3,4)(1)求直线BD和抛物线的解析式;(2)在第一象限内的抛物线上,是否存在疑点M,作MN垂直于x轴,垂足为点N,使得以M、O、N为顶点的三角形与BOC相似?若存在,求出点M的坐标;若不存在,请说明理由;(3)在直线BD上方的抛物线上有一动点P,过点P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年初安全培训记录课件
- 年初培训课件开场白
- 威尼斯的小艇课件图文
- 平高集团安全培训证书查询课件
- 平面设计美学基础课件
- 平面两直线位置关系课件
- E-Tadehaginoside-生命科学试剂-MCE
- 农发行保定市易县2025秋招半结构化面试15问及话术
- 农发行巴中市巴州区2025秋招笔试性格测试题专练及答案
- 农发行大连市金州区2025秋招笔试英语题专练及答案
- 《天疱疮诊断及治疗》课件
- 学校教代会代表换届选举方案
- 现代交换原理第二章
- 2024版工业润滑油销售协议范例版
- 企业级智能数据分析系统开发与服务合同
- 2024数据要素典型案例
- Unit 3 She has long hair. (教学设计)-2024-2025学年湘鲁版英语五年级上册
- 部编版初中语文书下注释(全六册)
- 职业学校“十四五”发展规划
- 油漆作业风险和隐患辨识、评估分级与控制措施一览表
- 高血压知识水平量表
评论
0/150
提交评论