




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
直线与圆的方程 一 、 重点剖析1.直线的基本问题:直线的方程几种形式、直线的斜率、两条直线平行与垂直的条件、两直线交点、点到直线的距离。例1已知与,若两直线平行,则的值为 解析: 点评:解决两直线平行问题时要记住看看是不是重合易错指导:不知道两直线平行的条件、不注意检验两直线是否重合是本题容易出错的地方。例2经过圆的圆心,且与直线垂直的直线方程是 解析:圆心坐标是,所求直线的斜率是,故所求的直线方程是,即。点评:本题考查解析几何初步的基本知识,涉及到求一般方程下的圆心坐标,两直线垂直的条件,直线的点斜式方程,题目简单,但交汇性很强,非常符合在知识网络的交汇处设计试题的命题原则,一个小题就把解析几何初步中直线和圆的基本知识考查的淋漓尽致。易错指导:基础知识不牢固,如把圆心坐标求错,不知道两直线垂直的条件,或是运算变形不细心,都可能导致得出错误的结果。2.圆的基本问题:圆的标准方程和一般方程、两圆位置关系.例3已知圆的方程为设该圆过点的最长弦和最短弦分别为和,则四边形的面积为( )ABCD解析:圆心坐标是,半径是,圆心到点的距离为,根据题意最短弦和最长弦(即圆的直径)垂直,故最短弦的长为,所以四边形的面积为。点评:本题考查圆、平面图形的面积等基础知识,考查逻辑推理、运算求解等能力。解题的关键有二,一是通过推理知道两条弦互相垂直并且有一条为圆的直径,二是能根据根据面积分割的道理,推出这个四边形的面积就是两条对角线之积的一半。本题是一道以分析问题解决问题的能力立意设计的试题。易错指导:逻辑思维能力欠缺,不能找到解题的关键点,或是运算能力欠缺,运算失误,是本题不能解答或解答错误的主要原因。3.圆锥曲线的基本问题:椭圆、双曲线、抛物线的标准方程及其性质,求简单的曲线方程.例4已知点P在抛物线y2 = 4x上,那么点P到点Q(2,1)的距离与点P到抛物线焦点距离之和取得最小值时,点P的坐标为( )A. (,1)B. (,1)C. (1,2)D. (1,2)解析:定点在抛物线内部,由抛物线的定义,动点到抛物线焦点的距离等于它到准线的距离,问题转化为当点到点和抛物线的准线距离之和最小时,求点的坐标,显然点是直线和抛物线的交点,解得这个点的坐标是。点评:本题考查抛物线的定义和数形结合解决问题的思想方法。类似的题目在过去的高考中比较常见。易错指导:不能通过草图和简单的计算确定点和抛物线的位置关系,不能将抛物线上的点到焦点的距离转化为其到准线的距离,是解错本题或不能解答本题的原因。例5已知圆以圆与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为 解析: 圆和轴的交点是,和轴没有交点。故只能是点为双曲线的一个顶点,即;点为双曲线的一个焦点,即。,所以所求双曲线的标准方程为。点评:本题考查圆和双曲线的基础知识,考查数形结合的数学思想。解题的关键是确定所求双曲线的焦点和顶点坐标。易错指导:数形结合的思想意识薄弱,求错圆与坐标轴的交点坐标,用错双曲线中的关系等,是不同出错的主要问题。4.直线与圆锥曲线的位置关系例6若圆的半径为1,圆心在第一象限,且与直线和轴相切,则该圆的标准方程是( )ABCD解析:设圆心坐标为,则且.又,故,由得(圆心在第一象限、舍去)或,故所求圆的标准方程是。点评:本题考查直线和圆的有关基础知识,考查坐标法的思想,考查运算能力。解题的关键是圆心坐标。易错指导:不能把直线与圆相切的几何条件通过坐标的思想转化为代数条件,或是运算求解失误等。例7过双曲线的右顶点为A,右焦点为F。过点F平行双曲线的一条渐近线的直线与双曲线交于点B,则AFB的面积为_解析:双曲线右顶点,右焦点,双曲线一条渐近线的斜率是,直线的方程是,与双曲线方程联立解得点的纵坐标为,故AFB的面积为。点评:本题考查双曲线的基础知识和运算能力。易错指导:过右焦点和渐近线平行的直线和双曲线只有一个交点,如果写错渐近线的方程,就会解出两个交点,不但增加了运算量,还使结果错误。例8在平面直角坐标系中,椭圆的焦距为,以为圆心,为半径的圆做圆,若过点,所作圆的两切线互相垂直,则该椭圆的离心率为 解析:过点作圆的两切线互相垂直,如图,这说明四边形是一个正方形,即圆心到点的距离等于圆的半径的倍,即,故。点评:本题把椭圆方程、圆和圆的切线结合起来,考查椭圆的简单几何性质,体现了“在知识的网络交汇处设计试题”的原则,较全面地考查了解析几何的基本知识。解题的突破口是将圆的两条切线互相垂直转化为一个数量上的关系。AyxOBGFF1易错指导:陷入圆的两条切线互相垂直,不能通过数形结合的方法找到解题途径等,是考生解错本题的主要原因。例9设,椭圆方程为,抛物线方程为如图4所示,过点作轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点(1)求满足条件的椭圆方程和抛物线方程;(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标)解析:(1)由得,当得,G点的坐标为,过点G的切线方程为即,令得,点的坐标为,由椭圆方程得点的坐标为,即,即椭圆和抛物线的方程分别为和;(2)过作轴的垂线与抛物线只有一个交点,以为直角的只有一个,同理以为直角的只有一个。若以为直角,设点坐标为,、两点的坐标分别为和, 。关于的二次方程有一大于零的解,有两解,即以为直角的有两个,因此抛物线上存在四个点使得为直角三角形。点评:本题考查椭圆和抛物线方程的求法、抛物线的切线方程的求法、存在性问题的解决方法、分析问题解决问题的能力,是一道几乎网罗了平面解析几何的所有知识点并且和导数的应用交汇在一起的综合性试题,是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能设备维护平台创新创业项目商业计划书
- 利用渔业废弃物生产有机肥料和饲料创新创业项目商业计划书
- 精准农业技术服务推广创新创业项目商业计划书
- 动物源天然色素提取创新创业项目商业计划书
- 功能性屠宰食品创新创业项目商业计划书
- 电商数据驱动决策支持创新创业项目商业计划书
- 国际水产养殖标准对接创新创业项目商业计划书
- 电信用户物联网设备接入服务创新创业项目商业计划书
- 2025年工业互联网平台SDN网络智能化升级与优化方案报告
- 现场培训课件
- 医院新技术、新项目准入申报表
- 项目经理安全目标考核表
- 《HSK标准教程1》第3课课件
- 三级安全教育考试试题及(全)
- 中国古代文学史《第二章:诗经》PPT课件(完整版)
- 云南省地质灾害群测群防手册
- 高级催乳师培训课程讲义
- 第三届韬奋杯全国出版社青编校大赛校对试题(已编辑)
- 关于BT项目主要法律规定
- OTN技术概述PPT课件
- 银发【2007】246号
评论
0/150
提交评论