




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
19.2.2一次函数 (1)学习目标:1、理解正比例函数、一次函数的概念。2、会根据数量关系,求正比例函数、一次函数的解析式。3、会求一次函数的值。学习重点:一次函数函数的概念和解析式。学习难点:根据已知信息写出一次函数的表达式,确定自变量的取值范围学习过程:一、创设问题情境:某登山队大本营所在地的气温为15,海拔每升高1km气温下降6登山队员由大本营向上登高xkm时,他们所处位置的气温是y试用解析式表示y与x的关系_.二、自主学习:1、回答下列问题:(1)、一颗树现在高60 cm,每个月长高2 cm,x月之后这棵树的高度为h cm,则h关于x的函数解析式为_.(2)、有人发现,在2025时蟋蟀每分钟鸣叫次数C与温度t()有关,即C的值约是t的7倍与35的差则C关于t的函数解析式为 (3)、某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按01元/分 收取)则y关于x的函数解析式为 (4)、把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化. 则y关于x的函数解析式为 上面这些函数的形式都是自变量x的k(常数)倍与一个常数的和 如果我们用b来表示这个常数的话这些函数形式就可以写成: 2.一次函数的概念一般地,形如 的函数,叫做一次函数当b=0时,y=kx+b即y=kx所以说正比例函数是一种特殊的一次函数3、对一次函数概念内涵和外延的把握:(1)自变量系数(常数)k0;(2)自变量x的次数为1;三、合作探究:1、 (1)下列函数中,是一次函数的有_,是正比例函数的有_(1) (2) (3) (4)(5) (6) (7)2、若函数y=(m-1)x+m是关于x的一次函数,试求m的值.3、已知函数y=(2-m)x+2m-3.求当m为何值时, (1)此函数为正比例函数? (2)此函数为一次函数?4、函数当时,当时,求。5、一个小球由静止开始在一个斜坡向下滚动,其速度每秒增加2米。(1)求小球速度v随时间t变化的函数关系式,它是一次函数吗?(2)求第2.5秒时小球的速度?(3)如果将题中”静止”改为”3米/秒“完成上述(1) (2)问。四、达标测试:1、若函数是正比例函数,则b = _2、在一次函数中,k =_,b =_3、若函数是一次函数,则m_4、下列说法不正确的是( ) (A)一次函数不一定是正比例函数 (B)不是一次函数就一定不是正比例函数(C)正比例函数是特定的一次函数 (D)不是正比例函数就不是一次函数5、仓库内原有粉笔400盒,如果每个星期领出36盒,则仓库内余下的粉笔盒数Q与星期数t之间的函数关系式是_,它是_函数。6、函数当时,当时,求此函数的解析式。课后反思:19.2.2 一次函数 (2)学习目标:、知道一次函数图象的特点,会熟练地画一次函数的图象。毛 、知道一次函数与正比例函数图象之间的关系。 、掌握一次函数的性质。学习重点:一次函数图象的特点、画法及性质学习难点:k、b的值与图象的位置关系。学习过程:w W w .X k b 1. c O m一、创设问题情境:什么叫一次函数?它的一般形式是什么?二、自主学习与合作交流:你们知道一次函数是什么形状吗? 那就让我们一起做一做,看一看。1、画出函数y=-6x,y=-6x+5,y=-6x-5的图象(在同一坐标系内)【思考】请你比较上面三个函数的图象的相同点与不同点,填出你的观察结果:这三个函数的图象形状都是 ,并且倾斜程度 ;函数y=-6x的图象经过(0,0);函数y=-6x+5的图象与y轴交于点 ,即它可以看作由直线y=-6x向 平移 个单位长度而得到的;函数y=-6x-5的图象与y轴交点是 ,即它可以看作由直线y=-6x向 平移 个单位长度而得到的。比较三个函数解析式,试解释这是为什么?【猜想】联系上面例子考虑一次函数y=kx+b的图象是什么形状,它与直线y=kx有什么关系?归纳平移法则:(1)一次函数y=kx+b的图象是一条 ,我们称它为直线y=kx+b,它可以看作由直线y=kx平移 个单位长度而得到(当b0时,向 平移;当b0时,向 平移;当b2时,y=_;y与x的函数解析式也可合起来表示为_(3) 画函数图像。二、合作交流1、某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药后2小时血液中含药量最高,达每毫升6微克(1000微克=毫克),接着逐渐减少,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y(微克)随时间(小时)的变化如图所示当成人按规定剂量服药后:(1)分别求出2和2时,y与之间的函数关系式;(2)如果每毫升血液中含药量为4微克或4微克以上时,在治疗疾病时是有效的,那么这个有效时间是多长?3、已知弹簧的长度y(厘米)在一定的限度内是所挂重物质量x(千克)的一次函数现已测得不挂重物时弹簧的长度是6厘米,挂4千克质量的重物时,弹簧的长度是7.2厘米求这个一次函数的关系式课后反思:19.2.3一次函数与一元一次方程学习目标:1、理解一次函数与一元一次方程关系,会根据图象解决一元一次方程求解问题。 2、学习用函数的观点看待方程的方法,经历方程与函数关系问题的探究过程, 学习用联系的观点看待数学问题。学习重点:利用一次函数知识求一元一次方程的解。学习难点:一次函数与一元一次方程的关系发现、归纳和应用。学习过程:一、创设问题情境:1、一次函数,当 时,;当 时,;当 时,。2、一次函数,x轴交点坐标为_;与y轴交点坐标_;图像经过_象限,y随x的增大而_,图像与坐标轴所围成的三角形的面积是 。二、自主学习:下面3个方程有什么共同点和不同点?你能从函数的角度对解这3个方程进行解释吗?,1、 解这3个方程相当于在一次函数的函数值分别为3,0,-1时,求 2、 画出的图像,从图像上可以看出上纵坐标分别取3,0,-1的点, 归纳:1、解一元一次方程相当于在某个一次函数 2、一元一次方程的解就是直线与轴的交点的 三、合作交流:1、若直线y=kx+6与两坐标轴所围成的三角形面积是24,求常数k的值是多少?2、弹簧的长度与所挂物体的质量的关系是一次函数,如图所示,请判断不挂物体时弹簧的长度是多少?四、达标测试:1、直线与轴的交点是( ) A、(0,3) B、(0,1) C、(3,0) D、(1,0)2、直线与轴的交点是(1,0 ),则的值是( )A、3 B、2 C、-2 D、-33、若直线的图像经过点(1,3),则方程的解是( )A、1 B、2 C、3 D、44、有一个一次函数的图象,可心和黄瑶分别说出了它的两个特征 可心:图象与x轴交于点(6,0)。 黄瑶:图象与x轴、y轴围成的三角形的面积是9。 你知道这个一次函数的关系式吗?课后反思:19.2.3一次函数与一元一次不等式学习目标:1、理解一次函数与一元一次不等式的关系,会根据图象解决一元一次不等式求解问题。2、学习用函数的观点看待方程的方法,经历方程与函数关系问题的探究过程,学习用联系的观点看待数学问题。学习重点:利用一次函数知识求一元一次不等式的解集。学习难点:一次函数的图像与一元一次不等式的关系。学习过程:一、创设问题情境: 1、一次函数,当 时,2;当 时,;当 时,。2、一次函数,x轴交点坐标为_;与y轴交点坐标_;当 时,0;当 时,二、自主学习:思考:下面3个不等式有什么共同点和不同点?你能从函数的角度对解这3个不等式进行解释吗?,1、解这3个不等式相当于在一次函数的函数值分别为大于2,小于0,小于-1时,求 2、3、 画出的图像,可以看出在直线上取纵坐标分别满足取大于2,小于0,小于-1的点,看 。归纳:解一元一次不等式相当于在某个一次函数的值 0时对应的函数图像在 ,时 三、合作交流:(1题,2题的图像都画在下面的坐标网格中)1、已知函数和相交于点A(2,-1),(1)、求的值,在同一坐标系中画出两个函数的图像。(2)、利用图像求出:当取何值时有:;(3)、利用图像求出:当取何值时有:且;且2、兄弟俩赛跑,哥哥先让弟弟跑9m,然后自己才开始跑。已知弟弟每秒跑3m,哥哥每秒跑4m。列出函数关系式,作出函数图象,观察图象回答下列问题:(1)何时哥哥追上弟弟?(2)何时弟弟跑在哥哥前面?(3)何时哥哥跑在弟弟前面?(4)谁先跑过20m?谁先跑过100m?四、达标测试:1、直线交坐标轴于A(-2,0),B(0,3)两点,则不等式的解集是( ) 23yxOA、 B、 C、 D、2、直线的图像如图所示,当时的取值范围是( )A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 环保设施建设工程包清工合同标准
- 国际贸易代理合同规范范本
- 存量房买卖与租赁政策咨询合同
- 指甲材料改性研究-洞察及研究
- 2025至2030中国天丝坯布行业发展分析及发展前景与投资报告
- 2025至2030中国男鞋行业发展趋势分析与未来投资战略咨询研究报告
- 医疗机构职业健康安全与患者权益保障合同
- 2025至2030中国触控一体机行业市场发展前景及发展战略与投资报告
- 2025至2030中国咖啡桌行业发展趋势分析与未来投资战略咨询研究报告
- 电商平台用户隐私保护合同签订标准及流程
- 中药药剂员职业考核试卷及答案
- 2025年脚手架租赁合同3篇
- 2025年下半年安徽省港航集团有限公司所属企业社会公开招聘22名考试参考试题及答案解析
- 2025年度企事业单位办公家具采购合同
- 2025福建厦门市公安局同安分局招聘警务辅助人员50人笔试备考试题及答案解析
- 巴彦淖尔教师招考试题及答案
- 2025年四川省建筑安全员A证模拟试题(及答案)
- 2025国家统计局济宁调查队城镇公益性岗位招聘3人备考题库及答案解析
- PETS公共英语二级大纲词汇
- 消控室制度上墙
- 蜗轮参数化设计(creo2.0)
评论
0/150
提交评论