




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Name:Yang bo 20112121010Section:Laboratory Exercise 4LINEAR, TIME-INVARIANT DISCRETE-TIME SYSTEMS: FREQUENCY-DOMAIN REPRESENTATIONS4.1 TRANSFER FUNCTION AND FREQUENCY RESPONSEProject 4.1 Transfer Function AnalysisAnswers:Q4.1 The modified Program P2_1 to compute and plot the magnitude and phase spectra of a moving average filter of Eq. (2.13) for 0 w 2p is shown below:w=0:pi/511:2*pi;M=input(M=);num=ones(1,M)/M;h=freqz(num,1,w);subplot(2,1,1);plot(w/pi,abs(h);grid;title(H(ejomega)幅度谱);xlabel(omega/pi);ylabel(振幅);subplot(2,1,2); plot(w/pi,angle(h);grid; title(相位谱H(ejomega); xlabel(omega/pi);ylabel(以弧度为单位的相位); This program was run for the following three different values of M and the plots of the corresponding frequency responses are shown below:M=5M=20 The types of symmetries exhibited by the magnitude and phase spectra are due to -The type of filter represented by the moving average filter is LPFQ4.2The plot of the frequency response of the causal LTI discrete-time system of Question Q4.2 obtained using the modified program is given below:w=0:pi/511:pi; num=0.150-0.15;den=1-0.50.7;h=freqz(num,den,w);subplot(2,1,1); plot(w/pi,abs(h);grid; title(H(ejomega)幅度谱);xlabel(omega/pi);ylabel(振幅);subplot(2,1,2);plot(w/pi,angle(h);grid;title(相位谱H(ejomega);xlabel(omega/pi); ylabel(以弧度为单位的相位);The type of filter represented by this transfer function is BPFQ4.3The plot of the frequency response of the causal LTI discrete-time system of Question Q4.3 obtained using the modified program is given below:w=0:pi/511:pi; num=0.150-0.15;den=0.7 -0.5 1;h=freqz(num,den,w);subplot(2,1,1); plot(w/pi,abs(h);grid; title(H(ejomega)幅度谱);xlabel(omega/pi);ylabel(振幅);subplot(2,1,2);plot(w/pi,angle(h);grid;title(相位谱H(ejomega);xlabel(omega/pi); ylabel(以弧度为单位的相位);The type of filter represented by this transfer function is - BPFThe difference between the two filters of Questions 4.2 and 4.3 is On the amplitude spectrum is the same, the topic of the phase spectrum is continuous, and kinds of phase jump line, I shall choose the filter of Question Q4.2 Q4.6The pole-zero plots of the two filters of Questions 4.2 and 4.3 developed using zplane are shown below:w=0:pi/511:pi;num=0.15 0 -0.15;den=1 -0.5 0.7;h=zplane(num,den);w=0:pi/511:pi;num=0.15 0 -0.15;den=0.7 -0.5 1;h=zplane(num,den);From these plots we make the following observations: Different function, zero zero and pole pole figure with different relative position of the circle4.2 TYPES OF TRANSFER FUNCTIONSProject 4.2FiltersA copy of Program P4_1 is given below:clf;fc=0.25;n=-6.5:1:6.5;y=2*fc*sinc(2*fc*n);k=n+6.5;stem(k,y):title(N=13);axis(0 13 -0.2 0.6);xlabel(时间信号n);ylabel(振幅);gridAnswers:Q4.7The plot of the impulse response of the approximation to the ideal lowpass filter obtained using Program P4_1 is shown below: The length of the FIR lowpass filter is 14The statement in Program P4_1 determining the filter length is n=-6.5:1:6.5; The parameter controlling the cutoff frequency is fcQ4.8The required modifications to Program P4_1 to compute and plot the impulse response of the FIR lowpass filter of Project 4.2 with a length of 20 and a cutoff frequency of wc = 0.45 are as indicated below:clf; fc=0.45/(2*pi);n=-9.5:1:9.5; y=2*fc*sinc(2*fc*n);k=n+9.5; stem(k,y);title(N=20);axis(020-0.20.6);xlabel(时间序号n);ylabel(振幅);gridThe plot generated by running the modified program is given below:Q4.9The required modifications to Program P4_1 to compute and plot the impulse response of the FIR lowpass filter of Project 4.2 with a length of 15 and a cutoff frequency of wc = 0.65 are as indicated below:clf; fc=0.65/(2*pi);n=-7.5:1:6.5; y=2*fc*sinc(2*fc*n);k=n+7.5; stem(k,y);title(N=15);axis(014-0.20.6);xlabel(时间序号n);ylabel(振幅);grid The plot generated by running the modified program is given below:Q4.11 A plot of the gain response of a length-2 moving average filter obtained using Program P4_2 is shown below:functiong,w=gain(num,den) -gain函数 w=0:pi/255:pi;h=freqz(num,den,w);g=20*log10(abs(h); M=2;num=ones(1,M)/M;g,w=gain(num,1);plot(w/pi,g);grid; axis(01-500.5) xlabel(omega/pi);ylabel(单位为db的增益);title(M=,num2str(M)From the plot it can be seen that the 3-dB cutoff frequency is at PI / 2Q4.12 The required modifications to Program P4_2 to compute and plot the gain response of a cascade of K length-2 moving average filters are given below: functiong,w=gainlink(num,den)gainlink函数w=0:pi/255:pi; h=freqz(num,den,w); H=h.*h.*h;g=20*log10(abs(H);M=2;num=ones(1,M)/M;g,w=gainlink(num,1);plot(w/pi,g);grid; axis(01-500.5) xlabel(omega/pi);ylabel(单位为db的增益);title(M=,num2str(M)The plot of the gain response for a cascade of 3 sections obtained using the modified program is shown below:From the plot it can be seen that the 3-dB cutoff frequency of the cascade is at 0.3*piQ4.19 A copy of Program P4_3 is given below:clf;b=1 -8.5 30.5 -63;num1=b 81 fliplr(b);num2=b 81 81 fliplr(b);num3=b 0 -fliplr(b);num4=b 81 -81 -fliplr(b);n1=0:length(num1) -1;n2=0:length(num2) -1;subplot(2,2,1); stem(n1,num1);xlabel(时间序号 n); ylabel(振幅); grid;title(1 型有限冲激响应滤波器);subplot(2,2,2); stem(n2,num2);xlabel(时间序号 n); ylabel(振幅); grid;title(2 型有限冲激响应滤波器);subplot(2,2,3); stem(n1,num3);xlabel(时间序号 n); ylabel(振幅); grid;title(3 型有限冲激响应滤波器);subplot(2,2,4); stem(n2,num4);xlabel(时间序号 n); ylabel(振幅); grid;title(4 型有限冲激响应滤波器);pausesubplot(2,2,1); zplane(num1,1);title(1 型有限冲激响应滤波器);subplot(2,2,2); zplane(num2,1);title(2 型有限冲激响应滤波器);subplot(2,2,3); zplane(num3,1);title(3 型有限冲激响应滤波器);subplot(2,2,4); zplane(num4,1);title(4 型有限冲激响应滤波器);disp(1 型有限冲激响应滤波器的零点是);disp(roots(num1);disp(2 型有限冲激响应滤波器的零点是);disp(roots(num2);disp(3 型有限冲激响应滤波器的零点是);disp(roots(num3);disp(4 型有限冲激响应滤波器的零点是);disp(roots(num4);The plots of the impulse responses of the four FIR filters generated by running Program P4_3 are given below:From the plots we make the following observations:Filter #1 is of length _8_ with a _80_ impulse response and is therefore a Type _ linear-phase FIR filter. Filter #2 is of length _10_ with a _80_ impulse response and is therefore a Type _ linear-phase FIR filter. Filter #3 is of length _8_ with a _60_ impulse response and is therefore a Type _ linear-phase FIR filter. Filter #4 is of length _10_ with a _80_ impulse response and is therefore a Type _ linear-phase FIR filter. From the zeros of these filters generated by Program P4_3 we observe that:Filter #1 has zeros at z = 2.9744、2.0888、0.9790 + 1.4110i、0.9790 - 1.4110i、0.3319 + 0.4784i、0.3319 - 0.4784i、0.4787、0.3362 Filter #2 has zeros at z = 3.7585 + 1.5147i、3.7585 - 1.5147i、0.6733 + 2.6623i、0.6733 - 2.6623i、-1.0000、0.0893 + 0.3530i、0.0893 - 0.3530i、0.2289 + 0.0922i、0.2289 - 0.0922iFilter #3 has zeros at z = 4.7627、1.6279 + 3.0565i、1.6279 - 3.0565i、-1.0000、1.0000、0.1357 + 0.2549i、0.1357 - 0.2549i、0.2100 Filter #4 has zeros at z = 3.4139、1.6541 + 1.5813i、1.6541 - 1.5813i、-0.0733 + 0.9973i、-0.0733 - 0.9973i、1.0000、0.3159 + 0.3020i、0.3159 - 0.3020i、0.2929 Q4.20 The plots of the impulse responses of the four FIR filters generated by running Program P4_3 are given below:From the plots we make the following observations:Filter #1 is of length _8_ with a _80_ impulse response and is therefore a Type _ linear-phase FIR filter. Filter #2 is of length _10_ with a _80_ impulse response and is therefore a Type _ linear-phase FIR filter. Filter #3 is of length _8_ with a _5_ impulse response and is therefore a Type _ linear-phase FIR filter. Filter #4 is of length _10_ with a _80_ impulse response and is therefore a Type _ linear-phase FIR filter. From the zeros of these filters generated by Program P4_3 we observe that: Filter #1 has zeros at z = 2.3273 + 2.0140i,2.3273 - 2.0140i,-1.2659 + 2.0135i,-1.2659 - 2.0135i, -0.2238 + 0.3559i,-0.2238 - 0.3559i,0.2457 + 0.2126i,0.2457 - 0.2126iFilter #2 has zeros at z = 2.5270 + 2.0392i, 2.5270 - 2.0392i,-1.0101 + 2.1930i.-1.0101 - 2.1930i,-1.0000 ,-0.1733 + 0.3762i,-0.1733 - 0.3762i,0.2397 + 0.1934i,0.2397 - 0.1934iFilter #3 has zeros at z = -1.0000 ,0.2602 + 1.2263i,0.2602 - 1.2263i,1.0000 ,0.6576 + 0.7534i,0.6576 - 0.7534i,0.1655 + 0.7803i,0.1655 - 0.7803iFilter #4 has zeros at z = 2.0841 + 2.0565i,2.0841 - 2.0565i,-1.5032 + 1.9960i,-1.5032 - 1.9960i,1.0000 ,-0.2408 + 0.3197i,-0.2408 - 0.3197i,0.2431 + 0.2399i,0.2431 - 0.2399i4.3 STABILITY TESTA copy of Program P4_4 is given below:clf;den=input(分母系数=);ki=p
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商务信息咨询公司合同付款管理办法
- 巷道掘进培训课件
- 2025年春运出行预测分析报告
- 岩石沙和黏土教学课件
- 屋面拆除安全教育培训课件
- 小麦春季管理课件
- 知识产权担保借款协议
- 专业物流公司特种车辆驾驶员合同样本
- 出租车车辆二手交易平台服务合同
- 上海房产交易资金监管合同
- 《测绘基础》课件(共八个任务)
- 物业轮岗活动方案
- 医院医疗服务培训
- 中国大麻酚油(CBD油)行业发展监测及投资战略研究报告
- 《工业机器人技术与应用》高职人工智能技术应用专业全套教学课件
- 中医院依法执业管理制度
- 广西b证继续教育考试试题及答案
- 2025年新高考1卷(新课标Ⅰ卷)语文试卷(含答案)
- JG/T 463-2014建筑装饰用人造石英石板
- DB32/T 3946-2020平原水网地区闸控航道通航标准
- 2025年初级银行从业资格之初级个人理财考试题库
评论
0/150
提交评论