实验八脉冲编码调制与解调实验.doc_第1页
实验八脉冲编码调制与解调实验.doc_第2页
实验八脉冲编码调制与解调实验.doc_第3页
实验八脉冲编码调制与解调实验.doc_第4页
实验八脉冲编码调制与解调实验.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

现代通信原理教师参考书实验八 脉冲编码调制与解调实验一、实验目的 1、掌握脉冲编码调制与解调的原理。2、掌握脉冲编码调制与解调系统的动态范围和频率特性的定义及测量方法。3、了解脉冲编码调制信号的频谱特性。4、了解大规模集成电路TP3067的使用方法。二、实验内容1、观察脉冲编码调制与解调的结果,分析调制信号与基带信号之间的关系。2、改变基带信号的幅度,观察脉冲编码调制与解调信号的信噪比的变化情况。3、改变基带信号的频率,观察脉冲编码调制与解调信号幅度的变化情况。4、观察脉冲编码调制信号的频谱。三、实验仪器1、信号源模块2、模拟信号数字化模块3、终端模块(可选)4、频谱分析模块(可选)5、20M双踪示波器 一台6、音频信号发生器(可选) 一台7、立体声单放机(可选) 一台8、立体声耳机 (可选) 一副9、连接线 若干四、实验原理脉冲编码(PCM)调制解调原理框图 本实验采用大规模集成电路TP3067对语音信号进行PCM编、解码。TP3067在一个芯片内部集成了编码电路和译码电路,是一个单路编译码器。其编码速率为2.048MHz,每一帧数据为8位,帧同步信号为8KHz。模拟信号在编码电路中,经过抽样、量化、编码,最后得到PCM编码信号。在单路编译码器中,经变换后的PCM码是在一个时隙中被发送出去的,在其他的时隙中编译码器是没有输出的,即对一个单路编译码器来说,它在一个PCM帧(32个时隙)里,只在一个特定的时隙中发送编码信号。同样,译码电路也只是在一个特定的时隙(此时隙应与发送时隙相同,否则接收不到PCM编码信号)里才从外部接收PCM编码信号,然后进行译码,经过带通滤波器、放大器后输出。具体电路图如下所示。 五、实验步骤及注意事项1、将信号源模块、模拟信号数字化模块小心地固定在主机箱中,确保电源接触良好。2、插上电源线,打开主机箱右侧的交流开关,再分别按下二个模块中的相应开关POWER1、POWER2,对应的发光二极管LED01、LED02发光,按一下信号源模块的复位键,二个模块均开始工作。(注意,此处只是验证通电是否成功,在实验中均是先连线,后打开电源做实验,不要带电连线)3、将信号源模块的拨码开关SW04、SW05设置为0000000 0000001。4、将信号源模块产生的正弦波信号(频率为2.5KHz,峰-峰值为3V)从点“S-IN”输入模拟信号数字化模块,将信号源模块的信号输出点“64K”、“8K”“BS”分别与模拟信号数字化模块的信号输入点“CLKB-IN”、“FRAMB-IN”、“2048K-IN”连接,观察信号输出点“PCMB-OUT”的波形。5、连接“CLKB-IN”和“CLK2-IN”,“FRAMB-IN”和“FRAM2-IN”,连接信号输出点“PCMB-OUT”和信号输入点“PCM2-IN”,观察信号输出点“JPCM”输出的波形。(因为是对随机信号进行编码,所以用模拟示波器无法同步信号输入点“PCM2-IN”,必须用数字存储示波器才能清楚观察到该点波形)6、将信号输出点“PCMB-OUT”和 “JPCM”输出的波形分别引入频谱分析模块,观察输出信号的频谱,记录下来。(可选)7、改变输入正弦信号的幅度,分别使其峰-峰值等于和大于5V,将示波器探头分别接在信号输出点“JPCM”和“PCMB-OUT”上,观察满载和过载时的脉冲幅度调制和解调的波形,并记录下来(应可观察到,当输入正弦波信号幅度大于5V时,PCM解码信号中带有明显的噪声。因为是对随机信号进行编码,所以用模拟示波器无法同步信号输出点“PCMB-OUT”,必须用数字存储示波器才能清楚观察到该点波形)8、 改变输入正弦信号的频率,使其频率分别大于3400Hz或小于300Hz,观察点“JPCM”、“PCMB-OUT”的输出波形,记录下来(应可观察到,当输入正弦波的频率大于3400Hz 或小于300Hz时,PCM解码信号的幅度急剧减小)。六、实验结果PCM输入信号: SIN:2.5KHz ,Vp-p=3V的正弦波CLKBIN:信号源输出点64K输出的62.5KHz方波FRAMBIN:信号源输出点8K输出的7.8125KHz方波2048KIN:信号源输出点BS输出的2MHz方波1、 PCMBOUT测试点 2、 JPCM测试点输出的波形(已调波) 输出的波形(解调后) 七、思考题答案1、 TP3067PCM编码器输出的PCM数据的速率是多少?在本次实验系统中,为什么要给TP3067提供2.048MHz的时钟?答:64Kb/S,属于国际标准,由PCM帧结构知1帧共有32个路时隙,每路时隙8bit,每秒有8000帧,故30/32路PCM基群的数码率为:8000*32*8=2.048Mb/s,即发送端定时电路的时钟频率。2、 为什么实验时观察到的PCM编码信号总是随时变化的?答:由于采样频率和输入信号的频率不是有规律的整数倍关系,所以抽样的信号点时刻不是一样的,编码输出的信号也即不一样,实时观察的信号就是随时变化的。3、 当输入正弦信号的频率大于3400Hz或小于300Hz时,分析脉冲编码调制和解调的波形。答:TP3067集成芯片主要是针对音频信号的,内部有一个带通滤波器滤除,当输入正弦信号的频率大于3400Hz或小于300Hz时,没有信号输入,量化值为零,编码输出全零,解调也为无。八、提问及解答1、认真分析TP3067主时钟与8KHz帧收、发同步时钟的相位关系。答:参考附录中TP3067芯片资料。2、 什么是脉冲编码调制?在脉码调制中,选用折叠二进码为什么比选用自然二进码好?答:将模拟信号的抽样量化值变换成代码,称为脉冲编码调制。采用折叠二进码可以大为简化编码的过程,而且在传输过程中如果出现误码,对小信号的影响较小。3、脉冲编码调制系统的输出信噪比与哪些因素有关?答:均匀量化器的输出信号量噪比为: S/Nq=M2 对于PCM系统,解码器中具有这个信号量噪比的信号还要通过低通滤波器。用N位二进制码进行编码时,上式可写为:S/Nq=22N上式表明,PCM系统的输出信号量噪比仅和编码位数N有关,且随N按指数规律增大。对于一个频带限制在f 的低通信号,按抽样定理,上式可改为:S/Nq=22(B/f)即PCM系统的输出信号量噪比随系统的带宽B按指数规律增长。九、扩展实验1、用单放机或音频信号发生器的输出信号代替信号源模块的正弦波,从点“S-IN”输入模拟信号数字化模块,重复上述操作和观察,并记录下来。2、将信号输出点“JPCM”输出的信号引入终端模块,用耳机听还原出来的声音,与单放机直接输出的声音比较,判断该通信系统性能的优劣。十、附录图8-1为TP3067的内部结构方框图,图8-2是TP3067的管脚排列图。图8-1 TP3067逻辑方框图44图8-2 TP3067管脚排列图1、TP3067管脚的功能(1)VPO+:接收功率放大器的非倒相输出(2)GNDA:模拟地,所有信号均以该引脚为参考点(3)VPO-:接收功率放大器的倒相输出(4)VPI:接收功率放大器的倒相输入(5)VFRO:接收滤波器的模拟输出(6)Vcc:正电源引脚,Vcc=+5V+5%(7)FSR:接收帧同步脉冲,它启动BCLKR,于是PCM数据移入DR,FSR为8KHz脉冲序列。(8)DR:接收数据帧输入。PCM数据随着FSR前沿移入DR。(9)BCLKR/CLKSEL: 在FSR的前沿把输入移入DR时位时钟,其频率可以从64KHz至2.048MHz。另一方面它也可能是一个逻辑输入,以此为在同步模式中的主时钟选择频率1.536MHz、1.544MHz或2.048MHz,BCLKR用在发送和接收两个方向。(10)MCLKR/PDN:接收主时钟,其频率可以为1.536MHz、1.544MHz或2.048MHz。它允许与MCLKx异步,但为了取得最佳性能应当与MCLKx同步,当MCLKR连续连在低电位时,CLKx被选用为所有内部定时,当MCLKR连续工作在高电位时,器件就处于掉电模式。(11)MCLKx:发送主时钟,其频率可以是1.536MHz、1.544MHz或2.048MHz,它允许与MCLKR异步,同步工作能实现最佳性能。(12)BCLKx:把PCM数据从Dx上移出的位时钟,其频率可以从64KHz至2.048MHz,但必须与MCLKx同步。(13)Dx:由FSx启动的三态PCM数据输出。(14)FSx:发送帧同步脉冲输入,它启动BCLKx并使Dx上PCM数据移出到Dx上。(15):开漏输出。在编码器时隙内为低脉冲。(16)ANLB:模拟环路控制输入,在正常工作时必须置为逻辑“0”,当拉到逻辑“1”时,发送滤波器和发送前置放大器输出的连接线被断开,而改为和接收功率放大器的VPO+输出连接。(17)GSx:发送输入放大器的模拟输出,用来在外部调节增益。(18)VFxI-:发送输入放大器的倒相输入。(19)VFxI+:发送输入放大器的非倒相输入。(20)VBB:负电源引脚,VBB = -5V+5%。2、功能说明(1)上电当开始上电瞬间,加压复位电路启动COMBO并使它处于掉电状态,所有非主要电路都失效,而Dx、VFRO、VPO-、VPO+均处于高阻抗状态。为了使器件上电,一个逻辑低电平或时钟脉冲必须作用在MCLKR/PDN引脚上,并且FSx和FSR脉冲必须存在。于是有两种掉电控制模式可以利用。在第一种中MCLKR/PDN引脚电位被拉高。在另一种模式中使FSx和FSr二者的输入均连续保持低电平,在最后一个FSx或FSr脉冲之后相隔2ms左右,器件将进入掉电状态,一旦第一个FSx和FSr脉冲出现,上电就会发生。三态数据输出将停留在高阻抗状态中,一直到第二个FSx脉冲出现。(2)同步工作在同步工作中,对于发送和接收两个方向应当用相同的主时钟和位时钟,在这一模式中,MCLKx上必须有时钟信号在起作用,而MCLKR/PDN引脚则起了掉电控制作用。MCLKR/PDN上的低电平使器件上电,而高电平则使器件掉电。这两种情况中,不论发送或接收方向,MCLKx都用作为主时钟输入,位时钟也必须作用在MCLKx上,对于频率为1.536MHz、1.544MHz或2.048MHz的主时钟,BCLKR/CLKCEL可用来选择合适的内部分频器,在1.544MHz工作状态下,本器件可自动补偿每帧内的第193个时钟脉冲。当BCLKR/CLKSEL引脚上的电平固定时,BCLKx将被选为发送和接收方向兼用的位时钟。表8-1说明可选用的工作频率,其值视BCLKx/CLKSEL的状态而定。在同步模式中,位时钟BCLKx可以从64KHz变至2.048MHz,但必须与MCLKx同步。每一个FSx脉冲标志着编码周期的开始,而在BCLKx的正沿上,从前一个编码周期来的PCM数据从已启动的Dx输出中移出。在8个时钟周期后,三态Dx输出恢复到高阻抗状态。随着FSR脉冲来临,依赖BCLKx(或在运行中的BCLKR)负沿上的DR输入,PCM数据被锁定,FSx和FSR必须与MCLKx或MCLKR同步。表8-1 主时钟频率的选择BCLKR/CLKSEL被选主时钟频率TP3067时钟012.048MHz1.536MHz1.544MHz2.048MHz(3)异步工作在异步工作状态中,发送和接收时钟必须独立设置,MCLK和MCLR必须为2.048MHz,只要把静态逻辑电平加到MCLKx/PDN引脚上,就能实现这一点。FSx启动每个编码周期而且必须与MCLKx和BCLKx保持同步。FSR启动每一个译码周期而且必须与BCLKR同步。BCLKR必须为时钟信号。表8-1中的逻辑电平对于异步模式是不成立的。BCLKx和BCLKR工作频率可从64KHz变到2.048MHz。(4)短帧同步工作COMBO既可以用短帧,也可以用长帧同步脉冲。在加电开始时,器件采用短帧模式,在这种模式中,FSx和FSr这两个帧同步脉冲的长度均为一个位时钟周期。在BCLKx的下降沿当FSx为高时,BCLKx的下一个上升沿可启动输出符号位的三态输出Dx的缓冲器,紧随其后的7个上升沿以时钟送出剩余的7个位,而下一个下降沿则阻止Dx输出。在BCLKR的下降沿当FSr为高时(BCLKx在同步模式),其下一个下降沿将锁住符号位,跟随其后的7个下降沿锁住剩余的7个保留位。(5)长帧同步工作为了应用长帧模式,FSx和FSr这两个帧同步脉冲的长度应等于或大于位时钟周期的三倍。在64KHz工作状态中,帧同步脉冲至少要在160ns内保持低电位。随着FSx或BCLKx的上升沿(无论哪一个先到)来到,Dx三态输出缓冲器启动,于是被时钟移出的第一比特为符号位,以后到来的BCLKx的7个上升沿以时钟移出剩余的7位码。随着第8个上升沿或FSx变低(无论哪一个后发生),Dx输出由BCLKx的下降沿来阻塞,在以后8个BCLKR的下降沿(BCLKR),接收帧同步脉冲FSR的上升沿将锁住DR的PCM数据。(6)发送部件发送部件的输入端为一个运算放大器,并配有两个调整增益的外接电阻。在低噪声和宽频带条件下,整个音频通带内的增益可达20dB以上。该运算放大器驱动一个增益为1的滤波器(由RC有源前置滤波器组成),后面跟随一个时钟频率为256KHz的8阶开关电容带通滤波器。该滤波器的输出直接驱动编码器的抽样保持电路。在制造中配入一个精密电压基准,以便提供额定峰值为2.5V的输入过载(tmax)。FSx帧同步脉冲控制滤波器输出的抽样,然后逐次逼近的编码周期就开始。8位码装入缓冲器内,并在下一个FSx脉冲下通过Dx移出,整个编码

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论