




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Clock and Data Recovery CircuitAt the output of the limiting amplifier, the amplified data signal with sharpened data edges is available for further processing, but unique interpretation of the received signal requires timing information. Serial communication links do not provide a synchronization signal on a separate channel and therefore the receiver must rely on the extraction of the timing information from the data stream. This clock and data recovery process can be performed in a similar manner in optical communication, electrical serial links, hard drive read-out channels, as well as in some memory interfaces. In the latter field, advocates and opponents of the clock forwarding scheme still debate about the advantages and drawbacks of per-channel clock recovery circuits.Proper denomination of the whole synchronization process would be clock recovery and data retiming, better describing the behaviorally independent operations. Indeed the recovered clock is used to re-sample the incoming (or sometimes delayed) data to provide proper timing information, i.e. synchronicity, for the following blocks (Figure 8.1). However, in many implementations, the retiming operation is embedded in the clock recovery part to achieve improved circuit performance .FIGURE 8.1. Clock recovery and data retiming principle The major challenges of multichannel clock recovery circuit design have already been presented, namely, the achievement of low-power and low-area overhead with minimum impact on the circuit performance. First, an introduction to the important concepts in the design of clock recovery circuits is presented. Then, an overview of a variety of clock recovery topologies with their respective advantages and drawbacks allows the reader to fully understand the design choices operated later in this chapter. After discussion of appropriate topologies for multichannel clock recovery, a top-down design approach is presented which validates the jitter performance of the selected topology at the concept level, at the behavioral level and at the transistor level. Finally, the transistor-level design of the CDR is briefly discussed and characterization techniques are introduced.1.Clock Recovery Principles Historically, clock recovery was performed using resonant filter-based structures, either using discrete passive elements or resonant elements like surface acoustic wave (SAW) devices. In the era of systems-on-chip, requirements for small system form factors and minimum bill of material, the use of such off-chip components is strongly discouraged. In the long-haul market, where fiber-optic communications made their breakthrough first, phase-locked loop (PLL) topologies have become the mainstream solution, thanks to their capability of monolithic integration with a minimum number of external components, typically only one loop filter capacitor. Beyond the fact that the PLL currently still dominates the field and is the most well-known clock recovery topology, we would like to use this CDR structure as a basis to the explanation of some concepts to the novice reader. A more detailed discussion of PLL-based clock recovery circuits can be found in 83. For simplification, let us first consider a phase-locked loop with a periodic input signal (Figure 8.2). The three main building blocks are the phase detector (PD), the loop filter (LF) and the voltage-controlled oscillator (VCO). The phase detector compares the phase error between the input signal and the generated signal at the VCO output. The phase error is integrated in the low-pass loop filter and the resulting control signal tunes the VCO frequency, which in turn reduces the phase error.FIGURE 8.2. PLL with periodic input signal The periodic input signal f(t) can be written as the sum of sine and cosine functions, namely, its Fourier series: In most high data rate applications, we can neglect the higher order harmonics and focus on the fundamental signal, which can be written as: The instantaneous value f(t) of a sine wave is defined by its peak amplitude A and its instantaneous phase (t), which can again be decomposed into a constant angular frequency w0=2f0 and a time-varyin phase angle(t). In phase and frequency modulation schemes used in wireless data transmission, this time-varying phase angle contains the information to be transmitted. In fiber optic links, it does not contain any useful information, but represents the phase noise due to channel and circuit imperfections like noise and limited bandwidth. In both types of applications, the phase-locked loop technique allows to extract the time-dependent phase information and track the input signal. The in-phase output signal vout, locked to the input signal, guarantees a very small phase error e(t) between the input phase i(t) and the output phase o(t)。This situation is called phase lock. As frequency is the derivative of the instantaneous phase, constant phase error provides zero frequency error between input and output signals. The loop bandwidth being limited by the low-pass filter, these characteristics are not guaranteed for variations d(t)/dt at higher frequencies. As already mentioned, the two-level amplitude modulation of the carrier in serial links can lead to data runs which do not contain any transitions. The low-pass behavior of the loop filter allows the PLL to memorize the signal frequency during these long runs without loss of phase lock. The capture range defines the frequency span of the input signal for which phase lock can be achieved. For frequencies outside this span, the PLL will remain in a free-running situation. Lock range on the other hand defines the frequency span for which lock can be maintained once it is acquired. Without going into more details, these parameters depend on the characteristics of the PLL building blocks, among which the VCOs tuning range, defining the span of frequencies the oscillator can generate when driving its control voltage from one end to the other of the range.中文译文时钟及数据恢复电路在限幅放大器的输出端,与锐化的数据边缘的放大的数据信号是可用于进一步处理,但所接收的信号的独特的解释需要定时信息。串行通信链路不提供在一个单独的信道的同步信号,因此,接收器必须依赖于从数据流中的定时信息的提取。该时钟和数据恢复过程,可以以类似的方式进行,在光通信,电串行链路,硬盘驱动器读出的信道,以及在一些存储器接口。在后场,时钟传送方案的倡导者和反对者的辩论的优点和缺点,每个通道的时钟恢复电路。适当的面额为整个同步过程中,将时钟恢复和数据重定时,更好地描述行为独立操作。事实上,所恢复的时钟被用于重新采样传入的(或有时延迟)的数据,以提供适当的定时信息,即同步性,为下面的块(图8.1)。然而,在许多实施方式中,再定时操作被嵌入的时钟恢复部,以达到提高电路性能。图8.1 时钟恢复和数据重定时原则多通道的时钟恢复电路设计的主要挑战已经被提出,即实现对电路性能的影响最小的低功耗和小面积的开销。首先,介绍的时钟恢复电路设计中的重要概念。然后,概述的各种时钟恢复拓扑各自的优点和缺点,可以让读者充分了解操作将在本章后面的设计选择。讨论适当拓扑结构的多路时钟恢复后,自顶向下的设计方法,验证所选择的拓扑结构的概念,在行为层面,在晶体管级的抖动性能。最后,简要讨论的晶体管级设计的CDR和表征技术。1.时钟恢复原理从历史上看,使用谐振基于过滤器的结构,无论是使用分立的无源元件或类似的表面声波(SAW)器件的谐振元件执行时钟恢复。的系统级芯片的时代,小型系统的外形尺寸和最低物料清单的要求,这样的断片式元件的使用是强烈劝阻。在长途市场,其中光纤通讯,他们的突破,锁相环(PLL)的拓扑结构已经成为主流的解决方案,用最少的外部元件数量的单片集成的能力,通常只有一个循环滤波电容。除了PLL目前仍然占主导地位的领域,是最知名的时钟恢复拓扑,我们希望给新手阅读器使用CDR结构为基础的一些概念的解释。基于PLL的时钟恢复电路的更详细的讨论,在83中可以找到。为简化起见,让我们先考虑用一个周期性的输入信号锁相回路(图8.2)。的三个主要建筑块的相位检测器(PD),环路滤波器(LF)和压控振荡器(VCO)。的相位检测器的输
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 难点解析人教版9年级数学上册《概率初步》同步训练练习题
- 2025康复医学治疗技术副高级职称全真模拟模拟题含完整答案详解(典优)
- 建筑防腐保温工程施工期设备管理
- 《员工招聘与配置》课件《员工招聘与配置》课件3
- 2023年肇庆市公务员行测【基础题】附答案详解
- 2023年度执法资格自我提分评估【名校卷】附答案详解
- 2025年度中国地质调查局自然资源综合调查指挥中心招聘社会在职人笔试备考试题有完整答案详解
- 2025年杭州市富阳区部分事业单位招聘38人笔试高频难、易错点备考题库参考答案详解
- 2024-2025学年度云南体育运动职业技术学院妇产护理期末考试彩蛋押题附答案详解【培优B卷】
- 2024-2025学年滁州职业技术学院《形势与政策》期末考试预测复习带答案详解(完整版)
- 人教版五年级上学期科学3.9《显微镜下的细胞》教学课件
- 医疗美容项目备案申请doc
- 第一章原核生物的形态、构造和功能
- 项目团队实施及人员配置
- 颅脑损伤营养支持
- 课题申报讲座课件
- 纸张消耗统计表
- Q∕SY 06327-2020 二氧化碳驱油气田集输管道施工技术规范
- 肩袖损伤护理
- 电镀时间与理论厚的计算方法
- Word操作练习题
评论
0/150
提交评论