全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高三数学 名校尖子生培优专题系列 填空题训练5 等价转化法教案 新人教a版五、等价转化法:通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。总之,能够多角度思考问题,灵活选择方法,是快速准确地解数学填空题的关键。典型例题:例1:设数列都是等差数列,若,则 。【答案】35。【考点】等差中项的性质,整体代换的数学思想。【解析】数列都是等差数列,数列也是等差数列。由等差中项的性质,得,即,解得。例2:当函数取得最大值时, 。【答案】。【考点】三角函数性质的运用。【解析】求解值域的问题,首先化为单一三角函数,然后利用定义域求解角的范围,从而结合三角函数图像得到最值点。,。,当且仅当即时,函数取得最大值。例3:设abc的内角a,b,c,所对的边分别是a,b,c.若,则角c= 。【答案】。【考点】余弦定理的运用【解析】由 得,根据余弦定理得。例4:设的内角的对边分别为,且则 【答案】。【考点】同角三角函数的基本关系式,两角和的三角公式,正弦定理的应用。【分析】,。,。 。 由正弦定理得,。例5:在平行四边形中,边、的长分别为2、1,若、分别是边、上的点,且满足,则的取值范围是 .【答案】。【考点】平面向量的基本运算。【解析】如图所示,以为原点,向量所在直线为轴,过垂直于的直线为轴建立平面直角坐标系。平行四边形中,。设,则。由得,。的横坐标为,的纵坐标为。函数在有最大值,在时,函数单调增加。在时有最小值2;在时有最大值5。的取值范围是。版权归锦元数学工作室,不得转载】例6:)已知正三棱锥abc,点p,a,b,c都在半径为的求面上,若pa,pb,pc两两互相垂直,则球心到截面abc的距离为 。【答案】。【考点】组合体的线线,线面,面面位置关系,转化思想的应用。【解析】在正三棱锥abc中,pa,pb,pc两两互相垂直,可以把该正三棱锥看作为一个正方体的一部分,(如图所示),此正方体内接于球,正方体的体对角线为球的直径ep,球心为正方体对角线的中点o,且ep平面abc,ep与平面abc上的高相交于点f。球o到截面abc的距离of为球的半径op减去正三棱锥abc在面abc上的高fp。球的半径为,设正方体的棱长为,则由勾股定理得。解得正方体的棱长=2,每个面的对角线长。截面abc的高为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023版车间技术操作规程模板
- 小学作文题目分析与写作思路
- 技术主管岗位职责及任职条件说明
- 小学英语单词拼读基础知识总结
- 康复治疗专业学生职业规划与发展路径
- 办公自动化系统用户手册及操作指导
- 数学余角和补角教学案例分析
- 阳台栏杆定制与安装技术要求
- 小学四年级音乐课堂教学设计范文
- 集中供热管道施工技术标准
- 2025年骨干教师选拔笔试试题及答案
- 出租商场货架合同范本
- 2025年江西省抚州市公安招聘警务辅助人员公安基础知识+综合理论知识复习题及答案
- 人工智能在智慧港口基础设施中的应用分析
- 2025年山东省公务员考试《行测》考试笔试试题试题解析
- 2025年第一季度西部战区空军医院招聘医师、技师、护士、药师、心理咨询师、协调员等岗位人员29人(四川)考前自测高频考点模拟试题有完整答案详解
- 建筑施工安全隐患排查整改报告范本
- 《月相》课件教学课件
- 学习勤奋的重要性:议论文(5篇)
- 瑞金市2025年公开招聘城市社区工作者【46人】考试参考试题及答案解析
- 2025年共青团入团考试题库(附答案)
评论
0/150
提交评论