氮化铝粉末的生产工艺.doc_第1页
氮化铝粉末的生产工艺.doc_第2页
氮化铝粉末的生产工艺.doc_第3页
氮化铝粉末的生产工艺.doc_第4页
氮化铝粉末的生产工艺.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

文献检索的作业实习:专利文献检索实习目的:了解专利文献检索的方法实习要求:能用多种途径进行专利文献检索实习设备:计算机实习内容:1、氮化铝粉末的生产工艺(国外专题数据库)(1)、Rare earth-activated aluminum nitride powders and method of makingInventorsBING HAN US JONATHAN TAP US MADIS RAUKAS US ApplicantsOSRAM SYLVANIA INC US PriorityUS 763689 P31-Jan-2006 ClassificationsInternational (2006.01): C04B 35/00European: C04B 35/581; C01B 21/072; C09K 11/08J; C09K 11/77D; C09K 11/77N6; C09K 11/77P6; C09K 11/77T6 Abstract Rare earth-activated aluminum nitride powders are made using a solution-based approach to form a mixed hydroxide of aluminum and a rare earth metal, the mixed hydroxide is then converted into an ammonium metal fluoride, preferably a rare earth-substituted ammonium aluminum hexafluoride (NH4)3Al1-xRExF6), and finally the rare earth-activated aluminum nitride is formed by ammonolysis of the ammonium metal fluoride at a high temperature. The use of a fluoride precursor in this process avoids sources of oxygen during the final ammonolysis step which is a major source of defects in the powder synthesis of nitrides. Also, because the aluminum nitride is formed from a mixed hydroxide co-precipitate, the distribution of the dopants in the powder is substantially homogeneous in each particle.(2)、Aluminum nitride sintered body and method of producing the same 公开号US5482905申请号US/08/178642 申请人SUMITOMO ELECTRIC INDUSTRES LTDSUMITOMO ELECTRIC INDUSTRIES LTD 发明人NAKAAHATA SEIJI AMATSUURA TAKAHIRO SOGABE KOUICHI YAMAKAWA AKIRAHATA SEIJIMATSUURA TAKAHIROSOGABE KOUICHIYAMAKAWA AKIRA 申请日期1994-01-05授权日期1996-01-09国际分类C04B35/58C04B35/58 美国专利分类501/98.4501/98.4 代理人Bierman; Jordan B.Bierman and Muserlianman; Jordan B.Bierman and Muserlian 摘要An aluminum nitride sintered body comprising aluminum nitride crystals belonging to a Wurtzite hexagonal crystal system wherein the 3 axes a, b and c of the unit lattice of the crystal are defined such that the ratio b/a of the lengths of the axes b and a is 1.000 near the center of the crystal grain and lies within the range 0.997-1.003 in the vicinity of the grain boundary phase. Aluminum nitride sintered body is produced by sintering a molded body of a raw material powder having aluminum and nitrogen as its principal components at a temperature of 1700.degree.-1900.degree. C. in a non-oxidizing atmosphere having a partial pressure of carbon monoxide or carbon of not more than 200 ppm and then cooling the sintered body to 1500.degree. C. or a lower temperature at a rate of 5.degree. C./min or less. The aluminum nitride sintered body has a greatly improved thermal conductivity and, therefore, is suitable for heat slingers, substrates or the like for semiconductor devices. 权利要求1. An aluminum nitride sintered body comprising aluminum nitride crystals belonging to a Wurtzite hexagonal crystal system wherein three axes a, b, and c of a unit lattice of the crystal are defined whereby a ratio b/a of the lengths of axes b and a is 1.000 near a center of the crystal grain, and lies within a range of 0.997 to 1.003 in a vicinity of a grain boundary phase, said sintered body containing at least one compound selected from the group consisting of Ti, V, and Co.2. An aluminum nitride sintered body as defined in claim 1 wherein the sintered body has a thermal conductivity of 150 W/m.K or higher.3. An aluminum nitride sintered body as defined in claim 1 wherein the sintered body has a 3-point flexural strength of 35 kg/mm.sup.2 or higher.4. A method of manufacturing an aluminum nitride sintered body comprising adding, to a raw material powder comprising aluminum and nitrogen as its principal components, 0.13 to 0.5% by weight of at least one compound selected from the group consisting of Ti, V, and Co,molding the raw material powder to form a molded body,sintering said molded body at a temperature of 1700.degree. to 1900.degree. C. in a non-oxidizing atmosphere having a partial pressure of carbon monoxide or carbon of not more than 200 ppm to form a sintered body, andcooling said sintered body to 1500.degree. C. or less, at a rate of 5.degree. C. per minute, or less.描述BACKGROUND OF THE INVENTION1. Field of the Invention This invention relates to an aluminum nitride (AlN) sintered body having an excellent thermal conductivity, and a method of manufacturing such a body.2. Description of the Prior ArtAluminum nitride has very good electrical insulation properties and a very high thermal conductivity. For this reason, aluminum nitride sintered bodies are used as a replacement for beryllia (BeO) in power transistor heat slingers or the like, as a replacement for alumina (Al.sub.2 O.sub.3) in substrates or packaging materials for semiconductor devices, and in laser tubes, etc.Although the thermal conductivity of aluminum nitride sintered bodies is far higher than that of other ceramic materials, the thermal conductivity of actual aluminum nitride sintered bodies industrially produced does not exceed about half the theoretical value of 320 W/mK. It is known that the thermal conductivity of aluminum nitride sintered bodies largely reduce when it contains impurities, such as silicon or oxygen, in solid solution. Recently, due to higher purity of the raw material powder and improved sintering techniques, it has become possible to obtain sintered bodies having a thermal conductivity of at most approximately 180 W/mK.However, even such conventional aluminum nitride sintered bodies are still unsatisfactory in their thermal conductivity and, with recent higher levels of integration of IC and LSI, a need has emerged for heat slingers, substrates, packaging materials or the like with enhanced heat releasing properties for the use in semiconductor devices.2、合成氨原料气得净化方法(中国专利)(1)、一种合成氨原料气的净化方法 一种用深度变换配甲烷化代替铜洗工艺,用以净化合成氨原料气的方法。该工艺通过两次低温变换反应,使原料气降至,此二次低变反应均采用低温,高活性耐毒性能力极强的钴钼系变换催化剂。再经氧化铁和氧化锌两级脱硫至总含硫量痕量,最后通过甲烷化反应将原料气净化至。本方法工艺稳定,气体净化度高,延长了合成催化剂的寿命。简化了流程,管理方便,运行费用低,节能效果好,特别适用于以煤为原料,原料气含硫高,含氨高,工艺水及蒸汽含氯根的中小型合成氨厂。一种合成氨原料气的净化方法一种代替铜洗工艺净化合成氨原料气的方法,原料气经脱硫、中变、低变后, 来自低变炉的变换气表压,温度,含,其特征是将此变换气经水冷器降温至入深度变换炉,进行变换反应,此反应采用钴钼系耐硫低温变换催化剂作为深变的催化剂,汽气比控制在,反应后将含量降至,温度为的深度变换气进入热水塔,与来自饱和塔的热水在塔内逆流接触回收热量后,温度降至,再入水冷器进一步降温至,送碳化工段,热水塔出口热水则通过生产系统的热水泵送入水加热器循环使用,深变气经碳化脱碳后,降至,该原料气进入压缩机三段加压至,送至氧化铁脱硫槽,脱除至,接着进入甲烷化热交换器,与甲烷化后的高温气体换热,温度达到,通过氧化锌脱硫槽,使原料气中总硫降至痕量,然后直接入甲烷化炉进行甲烷化反应,出口之甲烷气中,反应气经热交换器与反应前气体换热,降温至,再通过水冷器降至常温,最后进入压缩机四段、五段、六段送合成工段。武汉制氨厂专利号: 90108115申请日: 1990年9月29日公开/公告日:1992年4月8日授权公告日:1993年5月19日申请人/专利权人:武汉制氨厂国家/省市: 湖北(42)申请人地址:湖北省武汉市古田一路邮编:430035发明/设计人: 穆中、刘鸿文、沈明栋、陈根祥、王览东、杨唐杰代理人: 张元鲜专利代理机构: 武汉市专利事务所(42104)专利代理机构地址: 湖北省武汉市解放大道1087号(430016)专利类型: 发明公开号: 1060078公告日: 授权日: 20公告号: 1020707优先权: 审批历史: 1998年11月18日因费用终止日附图数: 1页数: 8权利要求项数: 1(2)、合成氨原料气的净化工艺 本发明公开了一种合成氨原料气的净化工艺,由半水煤气和天然气混合组成原料气经高温变换低温变换脱硫碳化精脱硫甲烷化等步骤至合成氨。缓解了天然气供应日趋紧张的矛盾,具有操作简单、净化效果好、运行费用低,无铜离子污染的特点。 主权项 一种合成氨原料气的净化工艺,其特征在于它按以下次序的步骤进行:()原料气:由经脱硫的半水煤气与天然气的转化气混合组成原料气,半水煤气占原料气总量(以体积计)的百分之二十以上,原料气中的含量大于,()高温变换:原料气在铁铬系催化剂作用下,控制温度在、压力在的条件下进行高温变换反应,()低温变换:高变气在钴钼系催化剂作用下、控制温度在、压力在的条件下进行低温变换反应,()脱硫:低变气在温度为、压力为的条件下、用稀氨水吸收硫化物,()碳化:脱硫低变气在温度为、压力为的条件下进行碳化反应,()精脱硫:碳化气在温度为、压力为的条件下,在钴钼脱硫剂的作用下进行有机硫加氢转化反应及氧化锌吸收生成,()甲烷化:精脱硫后的无硫气体在镍系催化剂作用下,控制温度在,压力在的条件下进行甲烷化反。 申请专利号CN94111679.4 专利申请日1994.03.18 名称合成氨原料气的净化工艺 公开(公告)号CN1092739公开(公告)日1994.09.28 类别化学;冶金颁证日优先权申请(专利权)四川省眉山县氮肥厂 地址612164四川省眉山县象耳镇发明(设计)人刘朝慧; 雷林 国际申请国际公布进入国家日期专利代理机构乐山市专利事务所 代理人邹明德 (3)、一种合成氨原料气深度净化方法本发明属于氮肥工业技术域。合成氨原料气深度净化技术,采用“二甲醚甲烷化”净化合成氨生产原料气的新工艺,以取代铜洗工艺,或者取代“甲醇甲烷化”净化合成氨原料气工艺,使有害气体一氧化碳和二氧化碳转化为二甲醚,残余气体中的一氧化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论