


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
海南省保亭中学高中数学选修2-1教案:3.1.4空间向量的正交分解及其坐标表示课 题:空间向量的基本定理教学目标:1掌握及其推论,理解空间任意一个向量可以用不共面的三个已知向量线性表示,而且这种表示是唯一的;2在简单问题中,会选择适当的基底来表示任一空间向量。教学重点:空间向量的基本定理及其推论教学难点:空间向量的基本定理唯一性的理解教学过程:一、创设情景平面向量基本定理的内容及其理解如果是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,使 二、新课讲授1、空间向量的基本定理如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使证明:(存在性)设不共面,过点作过点作直线平行于,交平面于点;在平面内,过点作直线,分别与直线相交于点,于是,存在三个实数,使所以(唯一性)假设还存在使不妨设即 共面此与已知矛盾 该表达式唯一综上两方面,原命题成立(注:上述证明不须给学生讲授)由此定理, 若三向量不共面,那么空间的任一向量都可由线性表示,所有空间向量组成的集合就是,这个集合可看作是由向量生成的,我们把叫做空间的一个基底,叫做基向量。注:空间任意三个不共面的向量都可以构成空间的一个基底如果空间一个基底的三个基向量两两互相垂直,那么这个基底叫做正交基底特别地,设、为由公共起点的三个两两互相垂直单位向量,称这个基底为单位正交基底,以 、的公共起点为原点,分别以、的方向为轴、轴、轴的正方向建立空间直角坐标系。那么,对于空间任意一个向量,一定可以把它平移,使它的起点与原点重合,得到向量。有空间向量基本定理可知,存在有序实数组,使得,我们把称作向量在单位正交基底、下的坐标,记作推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实数,使有空间向量定理可知,空间任意一个向量都可以用不共面的向量表示出来,这能为解决问题带来方便。三、典例分析例1 (课本例4)如图,、分别是四面体的边、的中点,、是的三等分点。用向量、表示和。解:= oa/cmed/b/adb例2如图,在正方体中,点e是ab与od的交点,m是od/与ce的交点,试分别用向量表示和解:例3 如图,已知空间四边形,其对角线,分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第二单元 第四章第二节 多细胞生物体的组成2023-2024学年七年级上册生物同步说课稿(苏教版)
- Unit 7 Whats the highest mountain in the world Section A(3a-3c)说课稿 2023-2024学年人教新目标八年级英语下册
- 活动4 规范使用家用电器说课稿-2025-2026学年小学劳动粤教版劳动与技术四年级-粤教版(劳动与技术)
- 国有建设用地使用权租赁续签合同
- 2.1.1 元素与物质的关系 物质分类与物质性质教学设计(2)-鲁科版高中化学必修第一册
- 七年级生物下册 第三单元 第五章 第三节 神经调节的基本方式说课稿 (新版)济南版
- 第一课 进入奇妙的LOGO世界说课稿-2023-2024学年小学信息技术(信息科技)六年级下册川教版
- 足球脚内侧踢球 教学设计-2023-2024学年高中体育与健康人教版必修第一册
- 全国爱眼日的主题活动总结
- 中医考试题及答案语音
- 影像科培训课件
- 2025-2030中国氨基酸市场行情监测与发展前景预测报告
- 2025年锦州辅警考试题库(附答案)
- 联名合作授权协议书范本
- 2025年广东中考历史试卷真题解读及答案讲评课件
- 律师从事公司自行清算业务操作建议流程
- 橡皮筋驱动小车说课课件
- 跟岗干部管理办法中组部
- 培训安全知识内容
- 医疗器械岗位职责、质量管理制度培训试题及答案
- 电网调度行业脑机接口技术应用案例分析
评论
0/150
提交评论