全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.2双曲线的几何性质一、教学目标:(一)知识与技能(1)根据条件,求出表示曲线的方程;(2)通过方程,研究曲线的性质理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念(二)过程与方法培养学生观察、分析、抽象、概括的逻辑思维能力和运用数形结合思想解决实际问题的能力。(三)情感、态度与价值观让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,充分利用图形对称性,注意图形的特殊性和一般性二、教学重难点:重点:探究双曲线的简单几何性质及应用难点:双曲线的渐近线和离心率三、教学过程:(一)复习提问引入新课1椭圆有哪些几何性质,是如何探讨的?2双曲线的两种标准方程是什么?下面我们类比椭圆的几何性质来研究它的几何性质类比联想得出性质(范围、对称性、顶点)引导学生完成下列关于椭圆与双曲线性质的表格(二)自学导案(三)解决自学导案(四)例题精析:例1:求双曲线9y216x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.解:把方程化为标准方程:.由此可知,实半轴长a=4,虚半轴长b=3.焦点的坐标是(0,5),(0,5).离心率.渐近线方程为,即.例2求双曲线的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x轴上;(2)焦距是10,虚轴长是8,焦点在y轴上;例3 求与双曲线共渐近线且过的双曲线的方程分析:因所求的双曲线与已知双曲线共渐近线,故可先设出双曲线系,再把已知点代入,求得K的值即可解:设与共渐近线且过的双曲线的方程为则 ,从而有所求双曲线的方程为五、课堂小结1.双曲线的范围、对称性、中心、顶点、实轴和虚轴、实轴长、虚轴长、渐近线方程、等轴双曲线;双曲线草图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2020-2025年公用设备工程师之专业知识(暖通空调专业)真题练习试卷A卷附答案
- 2025年国家电网招聘之财务会计类模拟题库及答案下载
- 2025年试验检测师之交通工程基础试题库和答案要点
- 麻醉药品分类与管理
- 《给青年的十二封信》阅读测试题(含答案)
- 收藏品海外代购与拍卖创新创业项目商业计划书
- 建筑搪瓷服务流程标准化创新创业项目商业计划书
- 外科器械操作培训创新创业项目商业计划书
- 座舱氛围灯音乐同步创新创业项目商业计划书
- 医院导诊机器人服务创新创业项目商业计划书
- 2025四川成都市金牛区“蓉漂人才荟”赴高校招聘事业单位工作人员12人(第二批次)笔试考试参考试题附答案解析
- 浙江省宁波市2026届高三第一学期模拟考试数学试卷(宁波一模)(含答案)
- 小学六年级科学2025年上学期期中测试试卷(含答案)
- 2025年磷矿石行业分析报告及未来发展趋势预测
- 2025年国企行测题库行测人文常识模拟题笔试参考题库附带答案详解
- 2025年全球网络安全的区块链应用
- 2025山东省教育厅直属事业单位省教育发展服务中心第二批招聘9人笔试考试备考试题及答案解析
- 2025海南琼海市社区专职网格员招聘为社区专职人员50人(1号)考试笔试模拟试题及答案解析
- 贵州国企招聘2025贵州盐业(集团)黔东南有限责任公司招聘笔试历年参考题库附带答案详解
- 2025江苏苏州市姑苏区人民武装部公益性岗位招聘2人备考考试试题及答案解析
- 高职院校专业课程教学质量评价标准
评论
0/150
提交评论