全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.2双曲线的几何性质一、教学目标:(一)知识与技能(1)根据条件,求出表示曲线的方程;(2)通过方程,研究曲线的性质理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念(二)过程与方法培养学生观察、分析、抽象、概括的逻辑思维能力和运用数形结合思想解决实际问题的能力。(三)情感、态度与价值观让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,充分利用图形对称性,注意图形的特殊性和一般性二、教学重难点:重点:探究双曲线的简单几何性质及应用难点:双曲线的渐近线和离心率三、教学过程:(一)复习提问引入新课1椭圆有哪些几何性质,是如何探讨的?2双曲线的两种标准方程是什么?下面我们类比椭圆的几何性质来研究它的几何性质类比联想得出性质(范围、对称性、顶点)引导学生完成下列关于椭圆与双曲线性质的表格(二)自学导案(三)解决自学导案(四)例题精析:例1:求双曲线9y216x2=144的实半轴长和虚半轴长、焦点坐标、离心率、渐近线方程.解:把方程化为标准方程:.由此可知,实半轴长a=4,虚半轴长b=3.焦点的坐标是(0,5),(0,5).离心率.渐近线方程为,即.例2求双曲线的标准方程:(1)实轴的长是10,虚轴长是8,焦点在x轴上;(2)焦距是10,虚轴长是8,焦点在y轴上;例3 求与双曲线共渐近线且过的双曲线的方程分析:因所求的双曲线与已知双曲线共渐近线,故可先设出双曲线系,再把已知点代入,求得K的值即可解:设与共渐近线且过的双曲线的方程为则 ,从而有所求双曲线的方程为五、课堂小结1.双曲线的范围、对称性、中心、顶点、实轴和虚轴、实轴长、虚轴长、渐近线方程、等轴双曲线;双曲线草图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职老年服务与管理(养老服务)试题及答案
- 2025年高职水产养殖学(水产动物养殖)试题及答案
- 2025年高职(新能源汽车检测与维修)维修技术试题及答案
- 2025年高职助产学(产科护理技术)试题及答案
- 禁毒安全教育内容课件
- 口腔医学考研就业前景
- 2026年幼儿春节故事欢欢喜喜过大年
- 光伏技术交底全套
- 光伏培训教学课件
- 2024黑龙江省各级机关考试录用公务员备考题库及参考答案详解
- TOC基本课程讲义学员版-王仕斌
- T-GDWCA 0035-2018 HDMI 连接线标准规范
- 面板堆石坝面板滑模结构设计
- 初中语文新课程标准与解读课件
- 无人机装调检修工培训计划及大纲
- 中建通风与空调施工方案
- 高考语言运用题型之长短句变换 学案(含答案)
- 春よ、来い(春天来了)高木绫子演奏长笛曲谱钢琴伴奏
- ARJ21机型理论知识考试题库(汇总版)
- 2023年娄底市建设系统事业单位招聘考试笔试模拟试题及答案解析
- GB/T 4623-2014环形混凝土电杆
评论
0/150
提交评论