




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 Learning A Discriminative Dictionary for Sparse Representation Zhuolin Jiang Zhe Lin Larry S Davis Computer Vision Laboratory University of Maryland College Park zhuolin lsd umiacs umd edu Advanced Technology Labs Adobe Systems Incorporated San Jose zlin 2 Sparse Paradigm Given a signal and the dictionary the sparse representation of y is estimated by subject to reconstruction error sparsity constraint 2 min F x Dxyx Tx 0 n Ry Kn RD K Rx 3 Dictionary Learning Techniques SRC algorithm employs the entire set of training samples to form a dictionary face recognition Wright TPAMI2009 K SVD Efficiently learn an over complete dictionary with a small size It focuses on representational power but does not consider discriminative capability restoration compression Aharon TSP2006 An online algorithm for learning dictionaries is proposed and faster than batch alternatives such as K SVD on large datasets restoration Mairal JMLR 2010 A tree structured sparse regularization is proposed to learn a dictionary embedded in a tree efficiently restoration Jenatton ICML2010 4 Dictionary Learning Techniques Discriminative dictionary learning approaches Constructing a separate dictionary for each class Mairal CVPR2008 Unifying the dictionary learning and classifier training into a mixed reconstructive and discriminative formulation Pham CVPR2008 Zhang CVPR2010 Mairal NIPS2009 Yang CVPR2010 Solve the problem to alternate between the two variables minimizing over one while keeping the other one fixed Learn simultaneously an over complete dictionary and multiple classification models for each class 5 Goals Learn a dictionary with representational and discriminative power for sparse representation Representational power which helps for achieving lower reconstruction error Discriminative power which is good for object classification Learn a universal multiclass linear classifier Develop an efficient way of finding the optimal solution to the dictionary learning problem 6 Approaches A new label consistency constraint called discriminative sparse code error is introduced and combined with reconstruction error and classification error to form a unified objective function for dictionary learning The optimal solution is efficiently obtained using the K SVD algorithm A single compact discriminative dictionary and a universal multiclass linear classier are learned simultaneously 7 Dictionary Learning Dictionary for Reconstruction and Sparse Coding Let Y be a set of n dim input signals dictionary D in RnxK K n is learned by Sparse Coding Given D the sparse representation X in RKxN of Y is reconstruction error sparsity constraint 8 Dictionary Learning Dictionary Learning for Classification A good classifier f x can be obtained by determining its model parameters W D and W can be learned jointly 9 Label Consistent K SVD LC KSVD1 Objective function where A is a linear transformation matrix Q are discriminative sparse codes for input training signals Y reconstruction error discriminative sparse code error 10 Label Consistent K SVD LC KSVD1 Objective function where A is a linear transformation matrix Q are discriminative sparse codes for input training signals Y reconstruction error discriminative sparse code error 11 Label Consistent K SVD LC KSVD2 Objective function discriminative sparse code error classification error 12 Label Consistent K SVD LC KSVD2 Objective function discriminative sparse code error classification error 13 Label Consistent K SVD Optimization We rewrite the objective function of LC KSVD2 as Let The optimization is equivalent to Initialization D0 K SVD is employed within each class and the outputs of each K SVD are combined A0 W0 Multivariate ridge regression 14 Label Consistent K SVD Classification In general D should be L2 normalized column wise i e Classification For a test image yi we first compute its sparse representation The classification result i e the label j of yi is given by WAD 15 Experimental Results Evaluation Databases Extended Yaleb AR Face Caltech101 Experimental Setup Random face based feature dims 504 Extended Yale 540 AR Face Spatial pyramid feature 1024 bases dims 3000 Caltech101 Max pooling L2 normalization 16 Experimental Results Extended Yale B dataset 38 persons 2414 frontal face images Under varying illumination conditions varying expressions Randomly selected half of the images training the other half testing 17 Experimental Results Extended Yale B dataset 18 Experimental Results AR Face database 2600 images 26 images per person 50 male and 50 females Different illumination conditions different expressions and different facial disguises with sunglasses and scarf respectively Randomly selected 20 images training 6 testing 19 Experimental Results AR Face database 20 Experimental Results Caltech 101 Object Dataset 9144 images 102 classes 101 object classes and a background class The number of images per category varies from 31 to 800 Significant variance in shape 21 Experimental Results Caltech 101 Object Dataset 22 Experimental Results Performance Comparisons a Recognition accuracy with varying different size b Training time with varying different size 23 Experimental Results Performance Comparisons c Recognition accuracy with different spatial pyramid matching settings 24 Examples of Sparse Representation K SVD 2 D KSVD 4 SRC 1 SRC 1 Class 41 in Caltech101 55 test images X axis means dictionary items Y axis indicates a sum of absolute sparse codes 25 Examples of Sparse Representation K SVD 2 D KSVD 4 SRC 1 SRC 1 Class 41 in Caltech101 55 test images X axis means dictionary items Y axis indicates a sum of absolute sparse codes LC KSVD2 26 Discussions and Conclusions Our approach is able to learn the dictionary discriminative coding and classifier parameters simultaneously Unlike approaches that learn multiple classifiers for categories to gain discrimination our approach yields very good classification results with only one simple linear classifier The basic reason for the good performance is that the new constraint encourages the input signals from the same class to have similar sparse codes and those from different classes to have dissimilar sparse codes Possible future work include a How to learn the optimal dictionary size for the learned dictionary b How to update the dictionary without retraining 27 Important References 1 J Wright A Yang A Ganesh S Sastry and Y Ma Robust face recognition via sparse representation TPAMI 2009 2 M Aharon M Elad and A Bruchstein K SVD An algorithm for designing overcomplete dictionaries for sparse representation IEEE Trans Sig Proc 2006 3 D Pham and S Venkatesh Joint learning and dictionary construction for pattern recognition CVPR 2008 4 Q Zhang and B Li Discriminative k svd for dictionary
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 协议买卖合同5篇
- 解析卷人教版八年级上册物理声现象《声音的产生与传播》专题测试试卷(附答案详解)
- 山西省经贸考试题库及答案
- 会计人员考试题库及答案
- 难点详解人教版八年级上册物理物态变化《熔化和凝固》专项测评试卷(含答案详解)
- 工程第三类考试题及答案
- 东莞六中考试题库及答案
- 岷县初一月考试卷子及答案
- 计算机专转本考试真题及答案
- 《病区医院感染管理规范》试题及答案
- 具身智能+农业种植精准农业解决方案研究报告
- 维护秩序靠规则(课件) 2025-2026学年八年级道德与法治上册(统编版2024)
- 当代主要疾病和预防课件2025-2026学年北师大版生物八年级上册
- (2025秋新版)青岛版科学二年级上册全册教学设计
- 葡萄种植培训课件
- 违规送礼批评教育谈话记录范文
- 车辆入股协议书范本合同
- 人防检测培训课件
- 光机热集成分析方法与技术:理论、应用与展望
- 2025年睡眠监护仪项目申请报告范文
- 征地拆迁业务知识培训课件
评论
0/150
提交评论