




免费预览已结束,剩余19页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2015年湖北省黄冈市高三 四月调考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。1已知复数在复平面内对应的点在虚轴上(不含原点),则实数a=() a 1 b 1 c d 2设全集u=r,a=x|x|2,b=x|y=,则图中阴影部分所表示的集合() a (2,+) b (1,2 c (2,1) d (2,13设0,函数y=sin(x+)的图象向右平移个单位后与原图象重合,则的最小值是() a b c 3 d 4下列说法中正确的是() a 命题“若xy,则xy”的逆否命题是“若xy,则xy” b 若命题p:xr,x2+10,则p:xr,x2+10 c 设x、yr,则“(xy)x20”是“xy”的必要而不充分条件 d 设l是一条直线,、是两个不同的平面,若l,l,则5小吴同学计划大学毕业后出国留学,其父母于2014年7月1日在银行存入a元钱,此后每年7月1日存入a元钱,若年利润为p且保持不变,并约定每年到期,存款的本息均自动转为新的一年的定期,在小吴同学2019年7月1日大学毕业时取出这五笔存款,则可以取出的钱(元)的总数为() a a(1+p)5 b a(1+p)6 c (1+p)5(1+p) d (1+p)6(1+p)6设、是单位向量,若=3,=,方向的投影为,则与夹角为() a b c d 7如图直观图由直三棱柱与圆锥组成的几何体,其三视图的正视图为正方形,则俯视图中的椭圆的离心率为() a b c d 8若函数f(x)=log(x2+4x+5)在区间(3m2,m+2)内单调递增,则实数m的取值为() a b c ) d )9运行如图的程序框图,若输入n=2015,则输出的a=() a b c d 10定义区间x1,x2长度为x2x1,(x2x1),已知函数f(x)= (ar,a0)的定义域与值域都是m,n,则区间m,n取最大长度时a的值为() a b a1或a3 c a1 d 3二、填空题:本大题共4小题,考生共需作答5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分。(一)必做题11-14。11已知实数x、y满足,则z=x3y的最小值是12设集合s=1,2,3,4,5,6,7,8,9,a=a1,a2,a3是s的子集,且a1、a2、a3满足a1a2a3,a3a25,则满足条件的集合a的个数为13在如图的正方形oabc内任取一点,此点在由曲线y=x2和直线x=0,x=1,y=所围成的阴影部分中的概率为14定义x表示不超过x的最大整数(xr),如:1,3=2,0,8=0;定义x=xx(1)+=;(2)当n为奇数时,+=(二)选做题:请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2b铅笔涂黑,如果全选,则按第15题作答结果计分。选修4-1:几何证明选讲15如图,直线pq与o相切于点a,ab是o的弦,pab的平分线ac交o于点c,连接cb,并延长与直线pq相交于点q,若aq=6,ac=5,则弦ab的长为选修4-4:坐标系与参数方程16已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合若曲线c1的方程为sin()+2=0,曲线c2的参数方程为()将c1的方程化为直角坐标方程;()若点q为c2上的动点,p为c1上的动点,求|pq|的最小值三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。17在abc中,角a、b、c的对边分别为a、b、c,向量=(sina,b+c),=(ac,sincsinb),满足|+|=|()求角b的大小;()设=(sin(c+),),=(2k,cos2a) (k1),有最大值为3,求k的值18已知a、b、c三点共线,等差数列an满足,a3a11+a14=1()求数列an的通项an及前n项和sn;()设数列bn满足bn=|an|,试求bn的前n项和tn19在某大学举行的自主招生考试中,随机抽取了100名考生的成绩(单位:分),并把所得数据列成了如下所示的频数分布表:组别 40,50) 50,60) 60,70) 70,80) 80,90) 90,100)频数 5 18 28 26 17 6()求抽取样本的平均数(同一组中的数据用该组区间的中点值代表);()已知这次考试共有2000名考生参加,如果近似地认为这次成绩z服从正态分布n(,2)(其中近似为样本平均数,2近似为样本方差s2=161),且规定82.7分是复试线,那么在这2000名考生中,能进入复试的有多少人?(附:12.7,若zn(,2),则p(z+)=0.6826,p(2z+2)=0.9544)20如图,在三棱柱abca1b1c1中,ab侧面bb1c1c,bc=1,bb1=2,ab=,bcc1=()求证:c1b平面abc;()试在棱cc1(不包含端点c,c1)上确定一点e的位置,使得eaeb1;()在()的条件下,求二面角aeb1a1的正切值21已知抛物线c1:y2=2px上一点m(3,y0)到其焦点f的距离为4;椭圆c2:的离心率e=,且过抛物线的焦点f()求抛物线c1和椭圆c2的标准方程;()过点f的直线l1交抛物线c1于a、b两不同点,交y轴于点n,已知,求证:+为定值()直线l2交椭圆c2于p,q两不同点,p,q在x轴的射影分别为p,q,+1=0,若点s满足:,证明:点s在椭圆c2上22已知函数f(x)=,g(x)=xf(x)+()求函数y=g(x)的单调区间;()若函数y=g(x)在区间ek,+(kz)上有零点,求k的最大值(e=2.718);()证明f(x)1在其定义域内恒成立,并比较f(22)+f(32)+f(n2)与(nn*且n2)的大小2015年湖北省黄冈市高三四月调考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。1已知复数在复平面内对应的点在虚轴上(不含原点),则实数a=() a 1 b 1 c d 考点: 复数代数形式的乘除运算专题: 数系的扩充和复数分析: 化简复数为a+bi的形式,然后求解即可解答: 解:=复数在复平面内对应的点在虚轴上(不含原点),可得a1=0,解得a=1故选:b点评: 本题考查复数的代数形式的混合运算,复数的基本概念,考查计算能力2设全集u=r,a=x|x|2,b=x|y=,则图中阴影部分所表示的集合() a (2,+) b (1,2 c (2,1) d (2,1考点: venn图表达集合的关系及运算专题: 集合分析: 求出集合a,b,然后求解阴影部分所表示的集合;解答: 解:全集u=r,a=x|x|2=x|2x2,b=x|y=x|x1,阴影部分为:a(cub)=x|2x2x|x1=x|2x1故选:c点评: 本题考查集合的基本运算,函数的定义域以及绝对值不等式的解法,考查计算能力3设0,函数y=sin(x+)的图象向右平移个单位后与原图象重合,则的最小值是() a b c 3 d 考点: 函数y=asin(x+)的图象变换专题: 计算题分析: 函数y=sin(x+)的图象向右平移个单位后与原图象重合可判断出是周期的整数倍,由此求出的表达式,判断出它的最小值解答: 解:函数y=sin(x+)的图象向右平移个单位后与原图象重合,=n,nz=n,nz又0,故其最小值是故选:b点评: 本题考查由y=asin(x+)的部分图象确定其解析式,解题的关键是判断出函数图象的特征及此特征与解析式中系数的关系,由此得出关于参数的方程求出参数的值,本题重点是判断出是周期的整数倍4下列说法中正确的是() a 命题“若xy,则xy”的逆否命题是“若xy,则xy” b 若命题p:xr,x2+10,则p:xr,x2+10 c 设x、yr,则“(xy)x20”是“xy”的必要而不充分条件 d 设l是一条直线,、是两个不同的平面,若l,l,则考点: 命题的真假判断与应用专题: 推理和证明分析: 写出原命题的逆否命题,可判断a;写出原命题的否定,可判断b;根据充要条件的定义,可判断c;根据线面垂直的性质,可判断d解答: 解:a中,命题“若xy,则xy”的逆否命题是“若xy,则xy”,故a错误;b中,若命题p:xr,x2+10,则p:xr,使x2+10,故b错误;c中,设x、yr,则“(xy)x20”“xy且x0”,充分性成立,反之,不可,即必要性不成立,故c错误;d中,设l是一条直线,、是两个不同的平面,若l,l,则,故d正确;故选:d点评: 本题以命题的真假判断为载体考查了四种命题,命题的否定,充要条件,空间线面关系等知识点,难度不大,属于基础题5小吴同学计划大学毕业后出国留学,其父母于2014年7月1日在银行存入a元钱,此后每年7月1日存入a元钱,若年利润为p且保持不变,并约定每年到期,存款的本息均自动转为新的一年的定期,在小吴同学2019年7月1日大学毕业时取出这五笔存款,则可以取出的钱(元)的总数为() a a(1+p)5 b a(1+p)6 c (1+p)5(1+p) d (1+p)6(1+p)考点: 等比数列;有理数指数幂的化简求值专题: 等差数列与等比数列分析: 先分别计算每一年存入a元到2019年的本息和,然后将所有存款的本息相加,由等比数列求得求和公式可得解答: 解:2014年的a元到了2019年本息和为a(1+q)5,2015年的a元到了2019年本息和为a(1+q)4,2016年的a元到了2019年本息和为a(1+q)3,所有金额为a(1+q)+a(1+q)2+a(1+q)5=(1+p)6(1+p),故选:d点评: 本题考查等比数列,涉及数列的应用和等比数列的求和公式,属中档题6设、是单位向量,若=3,=,方向的投影为,则与夹角为() a b c d 考点: 平面向量数量积的运算专题: 平面向量及应用分析: 设与夹角为,则由两个向量的数量积的定义求得=cos;又|=3,方向的投影为,可得 =3,由此求得cos的值,可得的值解答: 解:设与夹角为,则=11cos=cos=3()=33cos=33cos,又|=3,方向的投影为,=3,33cos=,求得cos=,=,故选:a点评: 本题主要考查两个向量的数量积的运算,属于基础题7如图直观图由直三棱柱与圆锥组成的几何体,其三视图的正视图为正方形,则俯视图中的椭圆的离心率为() a b c d 考点: 简单空间图形的三视图;平面与圆锥面的截线专题: 计算题;圆锥曲线的定义、性质与方程;空间位置关系与距离分析: 根据该几何体的直观图与三视图,得出椭圆的长轴、短轴2a与2b之间的关系,计算离心率e的值即可解答: 解:设俯视图中的椭圆长轴为2a,短轴长为2b,根据该几何体的直观图与三视图,得;2a=2b,b=a,c=a,e=;即俯视图中椭圆的离心率为故选:d点评: 本题考查了空间几何体的直观图与三视图的应用问题,也考查了椭圆的方程与几何性质的应用问题,是基础题8若函数f(x)=log(x2+4x+5)在区间(3m2,m+2)内单调递增,则实数m的取值为() a b c ) d )考点: 对数函数的图像与性质专题: 函数的性质及应用分析: 由对数函数和二次函数的性质易得函数的单调递增区间,只需让(3m2,m+2)是其子区间即可,由此可得m的不等式组,解不等式组可得解答: 解:先保证对数有意义x2+4x+50,解得1x5,又可得二次函数y=x2+4x+5的对称轴为x=2,由复合函数单调性可得函数f(x)=log(x2+4x+5)的单调递增区间为(2,5),要使函数f(x)=log(x2+4x+5)在区间(3m2,m+2)内单调递增,只需,解关于m的不等式组得m2,故选:c点评: 本题考查对数函数的性质,涉及复合函数的单调性和不等式组的解法,属基础题9运行如图的程序框图,若输入n=2015,则输出的a=() a b c d 考点: 循环结构专题: 图表型;算法和程序框图分析: 模拟程序框图的运行过程,得出该程序框图是计算a=+的值,i=4029时,计算a的值,输出a,程序结束解答: 解:执行程序框图,有n=2015a=0,i=1,a=,不满足条件i2n1,i=3,a=+,不满足条件i2n1,i=5,a=+,不满足条件i2n1,i=4029,a=+,满足条件i2n1,退出循环,输出a的值为+a=+=(1+)=故选:a点评: 本题考查了程序框图的运行过程的问题,解题时应模拟程序框图的运行过程,得出每次循环的a的值,裂项法求和是解题的关键,属于基础题10定义区间x1,x2长度为x2x1,(x2x1),已知函数f(x)= (ar,a0)的定义域与值域都是m,n,则区间m,n取最大长度时a的值为() a b a1或a3 c a1 d 3考点: 函数的值域;函数的定义域及其求法专题: 函数的性质及应用分析: 得出,故m,n是方程)=x的同号的相异实数根,即a2x2(a2+a)x+1=0的同号的相异实数根得出mn=,只需=a2(a+3)(a1)0,a1或a3,利用函数求解nm=,nm取最大值为此时a=3,解答: 解:设m,n是已知函数定义域的子集x0,m,n(,0)或m,n(0,+),故函数f(x)=在m,n上单调递增,则,故m,n是方程)=x的同号的相异实数根,即a2x2(a2+a)x+1=0的同号的相异实数根mn=m,n同号,只需=a2(a+3)(a1)0,a1或a3,nm=,nm取最大值为此时a=3,故选:d点评: 本题考查了函数性质的方程的运用,属于中档题,分类讨论思想的运用,增加了本题的难度,解题时注意二、填空题:本大题共4小题,考生共需作答5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置上,答错位置,书写不清,模棱两可均不得分。(一)必做题11-14。11已知实数x、y满足,则z=x3y的最小值是21考点: 简单线性规划专题: 不等式的解法及应用分析: 作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可解答: 解:由z=x3y得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=经过点b时,直线y=的截距最大,此时z最小,由,解得,即b(3,8)代入目标函数z=338=21,目标函数z=x3y的最小值是21故答案为:21点评: 本题主要考查线性规划的基本应用,利用目标函数的几何意义是解决问题的关键,利用数形结合是解决问题的基本方法12设集合s=1,2,3,4,5,6,7,8,9,a=a1,a2,a3是s的子集,且a1、a2、a3满足a1a2a3,a3a25,则满足条件的集合a的个数为81考点: 集合的包含关系判断及应用专题: 集合分析: 根据条件,可考虑用逆向的方法求解,从9个数中任取3个数组成集合,显然组成中取法,而不符合条件的集合容易求出有3个,从而得出满足条件的集合a的个数为933解答: 解:从集合s中任取3个元素,有=84种取法;而a1=1,a2=2,a3=8;a1=1,a2=2,a3=9;a1=1,a2=3,a3=9这三种取法不符合条件,不能构成集合a的元素;满足条件的集合a的个数为843=81故答案为:81点评: 考查列举法表示集合,子集的概念,以及逆向思维解题的方法13在如图的正方形oabc内任取一点,此点在由曲线y=x2和直线x=0,x=1,y=所围成的阴影部分中的概率为考点: 几何概型专题: 概率与统计分析: 首先利用定积分求出阴影部分的面积,然后利用几何概型公式解答解答: 解:由曲线y=x2和直线x=0,x=1,y=所围成的阴影部分面积为=(|+()|=,正方形的面积为1,由几何概型的公式得到所求概率为;故答案为:点评: 本题考查了几何概型的概率求法以及利用定积分求曲边梯形的面积;关键是正确求出阴影部分的面积14定义x表示不超过x的最大整数(xr),如:1,3=2,0,8=0;定义x=xx(1)+=2;(2)当n为奇数时,+=考点: 函数的值专题: 函数的性质及应用;推理和证明分析: (1)利用新定义求出,利用二项展开式求、的值,根据规律求出的值,代入所求的式子求解;(2)由(1)归纳出规律,利用此规律求出所求的式子的值解答: 解:(1)由题意得,=,=998+,=998+998=,=100023000+3,=100023000+3(100023000+31)=由二项式定理同理可得,=,+=+=2;(2)由(1)可归纳出当n是奇数时,=,当n是偶数时,=,当n为奇数时,则有个偶数,个奇数,+=,故答案:(1)2;(2)点评: 本题考查由新定义求函数值,归纳推理,以及二项式定理的应用,解题的关键是根据前几项的规律发现所求项的各项的值,属于中档题(二)选做题:请考生在第15、16两题中任选一题作答,请先在答题卡指定位置将你所选的题目序号后的方框用2b铅笔涂黑,如果全选,则按第15题作答结果计分。选修4-1:几何证明选讲15如图,直线pq与o相切于点a,ab是o的弦,pab的平分线ac交o于点c,连接cb,并延长与直线pq相交于点q,若aq=6,ac=5,则弦ab的长为考点: 与圆有关的比例线段专题: 推理和证明分析: 求出ac=bc=5,qc=9,由qab=acq,知qabqca,即可求弦ab的长解答: 解:pq与o相切于点a,pac=cba,pac=bac,bac=cba,ac=bc=5,又知aq=6,aq2=qbqc=(qcbc)qc,qc=9由qab=acq,知qabqca,ab:ac=aq:qc,ab=,故答案为:点评: 本题考查切割线定理,考查三角形相似的判定与性质,考查学生分析解决问题的能力,属于中档题选修4-4:坐标系与参数方程16已知极坐标系的极点与直角坐标系的原点重合,极轴与x轴的非负半轴重合若曲线c1的方程为sin()+2=0,曲线c2的参数方程为()将c1的方程化为直角坐标方程;()若点q为c2上的动点,p为c1上的动点,求|pq|的最小值考点: 参数方程化成普通方程;简单曲线的极坐标方程专题: 坐标系和参数方程分析: (i)sin()+2=0展开,把代入即可得出()利用sin2+cos2=1可把曲线c2的参数方程化为直角坐标方程,求出圆心到直线的距离即可得出解答: 解:()由已知得,即()由曲线c2的参数方程可得得x2+y2=1,圆心为c2(0,0),半径为1又圆心到直线c1的距离为,|pq|的最小值为点评: 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、点到直线的距离公式,考查了计算能力,属于基础题三、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。17在abc中,角a、b、c的对边分别为a、b、c,向量=(sina,b+c),=(ac,sincsinb),满足|+|=|()求角b的大小;()设=(sin(c+),),=(2k,cos2a) (k1),有最大值为3,求k的值考点: 解三角形;平面向量的综合题;三角函数的最值专题: 计算题分析: ()由条件|可得,代入得(ac)sina+(b+c)(sincsinb)=0,根据正弦定理,可化为a(ac)+(b+c)(cb)=0,结合余弦定理a2+c2b2=2acosb,代入可求:()先求=2ksin(c+)+cos2a=2ksin(c+b)+cos2a=2ksina+cos2a=sin2a+2ksina+=(sinak)2+k2+(k1)结合0a,及二次函数的知识求解,解答: 解:()由条件,两边平方可得,=(sina,b+c),=(ac,sincsinb),代入得(ac)sina+(b+c)(sincsinb)=0,根据正弦定理,可化为a(ac)+(b+c)(cb)=0,即a2+c2b2=ac,又由余弦定理a2+c2b2=2acosb,所以cosb=,b=60()=(sin(c+),),=(2k,cos2a)(k1),=2ksin(c+)+cos2a=2ksin(c+b)+cos2a=2ksina+cos2a=sin2a+2ksina+=(sinak)2+k2+(k1)而0a,sina(0,1,故当sina=1时,mn取最大值为2k=3,得k=点评: 本题主要考查了向量数量积极的坐标表示,余弦定理解答三角形,及含参数的二次函数的最值的求解,属于知识的综合运用,属于中档试题18已知a、b、c三点共线,等差数列an满足,a3a11+a14=1()求数列an的通项an及前n项和sn;()设数列bn满足bn=|an|,试求bn的前n项和tn考点: 数列的求和;平面向量的基本定理及其意义专题: 等差数列与等比数列分析: (i)利用向量共线定理可得:a4+(a7+1)=1,又a3a11+a14=1利用等差数列的通项公式及其前n项和公式即可得出(ii)由an0,解得;当n5时,tn=sn当n6时,an0tn=2s5sn,即可得出解答: 解:(i)a、b、c三点共线,等差数列an满足,a4+(a7+1)=1,又a3a11+a14=1,解得a1=9,d=2an=112n,sn=n2+10n(ii)由an0,解得;当n5时,+10n当n6时,an0tn=2s5sn=n210n+50tn=点评: 本题考查了等差数列的通项公式及其前n项和公式、递推式的应用、含绝对值的数列求和问题,考查了推理能力与计算能力,属于中档题19在某大学举行的自主招生考试中,随机抽取了100名考生的成绩(单位:分),并把所得数据列成了如下所示的频数分布表:组别 40,50) 50,60) 60,70) 70,80) 80,90) 90,100)频数 5 18 28 26 17 6()求抽取样本的平均数(同一组中的数据用该组区间的中点值代表);()已知这次考试共有2000名考生参加,如果近似地认为这次成绩z服从正态分布n(,2)(其中近似为样本平均数,2近似为样本方差s2=161),且规定82.7分是复试线,那么在这2000名考生中,能进入复试的有多少人?(附:12.7,若zn(,2),则p(z+)=0.6826,p(2z+2)=0.9544)考点: 正态分布曲线的特点及曲线所表示的意义;众数、中位数、平均数专题: 计算题;概率与统计分析: ()由所得数据列成的频数分布表,利用平均数公式公式能求出抽取的样本平均数;()由()知zn(70,161),由此能求出p(z82.7)=0.1587,从而能求出在这2000名考生中,能进入复试人数解答: 解:()由所得数据列成的频数分布表,得:样本平均数=450.05+550.18+650.28+750.26+850.17+950.06=70;(2)由()知zn(70,161),p(z82.7)=0.1587,在这2000名考生中,能进入复试的有:20000.1587318人点评: 本题考查概率的求法,考查正态分布的求法,是中档题,20如图,在三棱柱abca1b1c1中,ab侧面bb1c1c,bc=1,bb1=2,ab=,bcc1=()求证:c1b平面abc;()试在棱cc1(不包含端点c,c1)上确定一点e的位置,使得eaeb1;()在()的条件下,求二面角aeb1a1的正切值考点: 二面角的平面角及求法;直线与平面垂直的判定专题: 空间位置关系与距离;空间角分析: ()由余弦定理即可求出,从而可说明c1bbc,而由ab平面bb1c1c可得到eb1ab,从而根据线面垂直的判定定理即可得到c1b平面abc;()连接be,由上面知eb1be,设ce=x,(0x2),分别根据余弦定理可得到,从而根据即可求出x=1,从而e点的位置为棱cc1的中点;()容易说明bae等于二面角aeb1a1平面角的大小,并且abe是直角三角形,从而便能求出二面角aeb1a1的正切值解答: 解:()证明:bcc1中,bc=1,cc1=bb1=2,;由余弦定理:;c1bbc;又ab平面bb1c1c,c1b平面bb1c1c;c1bab,abbc=b;c1b平面abc;()如图,连接be,ab平面bb1c1c;eb1ab;若eaeb1,即eb1ea,abea=a;eb1平面abe,be平面abe;eb1be;设ce=x则ec1=2x;在bce中,由余弦定理得be2=x2x+1;,在eb1c1中,由余弦定理得=1+(2x)2+(2x)=x25x+7;在rtbb1e中,;2x26x+8=4;解得x=1,或x=2(舍去);e为cc1中点时,eaeb1;()由前面知abeb1,aeeb1;bae等于二面角aeb1a1的大小;abbb1c1c,abbe;在rtabe中,tan;二面角aeb1a1的正切值为点评: 考查余弦定理,直角三角形边的关系,线面垂直的性质,线面垂直的判定定理,以及二面角平面角的概念及求法,正切函数的定义21已知抛物线c1:y2=2px上一点m(3,y0)到其焦点f的距离为4;椭圆c2:的离心率e=,且过抛物线的焦点f()求抛物线c1和椭圆c2的标准方程;()过点f的直线l1交抛物线c1于a、b两不同点,交y轴于点n,已知,求证:+为定值()直线l2交椭圆c2于p,q两不同点,p,q在x轴的射影分别为p,q,+1=0,若点s满足:,证明:点s在椭圆c2上考点: 直线与圆锥曲线的综合问题;抛物线的标准方程专题: 圆锥曲线的定义、性质与方程分析: ()利用抛物线上一点m(3,y0)到其焦点f的距离为4;求出p,即可得到抛物线方程,通过椭圆的离心率,且过抛物线的焦点f(1,0)求出a,b,即可得到椭圆的方程()直线l1的斜率必存在,设为k,设直线l与椭圆c2交于a(x1,y1),b(x2,y2),求出直线l的方程为y=k(x1),n(0,k),联立直线与椭圆的方程,利用韦达定理以及判别式,通过向量关系式即可求出+为定值()设p(xp,yp),q(xq,yq),可得s(xp+xq,yp+yq),通过转化证明即可解答: 解:()抛物线上一点m(3,y0)到其焦点f的距离为4;抛物线的准线为抛物线上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第五单元 物质组成的表示教学设计-2025-2026学年初中化学八年级全一册人教版(五四学制)
- 债权投资说课稿-2025-2026学年中职专业课-企业财务会计-纳税事务-财经商贸大类
- 热力站运行工创新应用能力考核试卷含答案
- 剑麻栽培工班组评比强化考核试卷含答案
- 2025年高纯砷及氧化砷项目发展计划
- 基于噪声数据的鲁棒分类学习框架及算法研究
- 第一课时 生活需要法律2023-2024学年七年级下册道德与法治同步说课稿(统编版)
- 传染病防治法律制度
- 21.3 实际问题与一元二次方程第三课时 说课稿 2024-2025学年人教版数学九年级上册
- 2024年10月银行从业资格考试题库及答案
- 2023全国技能竞赛-职业素养考核试题及答案
- 实验室搅拌器实验室搅拌器安全操作及保养规程
- 企业员工在职证明模板
- 新媒体运营PPT完整全套教学课件
- 计算机系统阐述(海协360智能管理软件最终版)
- 32《细胞器之间的分工合作》教案
- 义务教育英语课程标准-评价部分解读课件
- 国家开放大学电大专科《药理学》形考任务4试题及答案(试卷号:2118)
- 中职语文《雨巷》市公开课一等奖省名师优质课赛课一等奖课件
- 高二物理课件:竞赛薄膜干涉
- 三层液法和偏析法对比
评论
0/150
提交评论