苏教版六年级数学下《分数四则混合运算》教材分析.doc_第1页
苏教版六年级数学下《分数四则混合运算》教材分析.doc_第2页
苏教版六年级数学下《分数四则混合运算》教材分析.doc_第3页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学资料参考苏教版六年级数学下分数四则混合运算教材分析- 1 -第一,教学计算,例题的内容容量很大.例1教学分数四则混合运算,包括按运算顺序计算和应用运算律简便计算.在这道例题中,既要把整数四则混合运算的运算顺序迁移过来,还要理解整数的运算律在分数中同样适用.把按运算顺序计算和应用运算律简便计算有机结合起来,把口算和笔算结合起来,组建四则混合运算的认知结构,有益于理解和掌握计算知识,形成实实在在的计算能力.第二,教学解决实际问题,例题的编排细致.本单元解答稍复杂的求一个数的几分之几是多少的实际问题,一般列综合式计算.提出这个要求有两点原因:首先是前面刚教学了四则混合运算,学生具备列综合算式的能力.更重要的是,六年级(下册)列方程解答稍复杂的百分数应用题,要以现在的综合算式的数量关系为依托.教材里稍复杂的求一个数的几分之几是多少的实际问题都是两步计算的问题,这些实际问题的数量关系是教学重点,也是难点.为此,编排了两道例题.例2及练一练都是先求总数的几分之几是多少,再求总数的另一部分是多少.例3及练一练都是先求一个数的几分之几是多少,再求比这个数多(少)几的数是多少.两道例题循序渐进地引导学生把第三单元里学到的求一个数的几分之几是多少这个数量关系与实际生活中的其他数量关系联系起来,提高解决实际问题的能力.第三,不教学稍复杂的分数除法问题.传统教材教学分数乘法应用题之后还教学分数除法应用题,而且把除法应用题与乘法应用题对称编排.本单元只编排分数乘法问题,不教学除法问题,要突出稍复杂的求一个数的几分之几是多少的问题的数量关系.因为分数乘法问题在日常生活中比较常见,它的数量关系、解题思路能迁移到稍复杂的百分数问题中去.一、 一题两解既含运算顺序,又含运算律的内容.例1求做两种中国结一共用的彩绳数量,由于这个实际问题具有特殊性(两种中国结的个数相同,两种中国结每个用彩绳的米数不同),所以它有不同的解法.教材充分利用这一特殊性,让学生按不同的思路列综合算式解答,能有两个收获:第一个收获是体会分数四则混合运算的运算顺序.算式2/518+3/518的思路是,先分别求出两种中国结各用彩绳多少米,因此列出的算式要先算乘法.算式(2/5+3/5)18的思路是,先求出两种中国结各做一个要用彩绳的米数,这正是在算式里加括号的目的.所以,计算有括号的算式,要先算括号里面的.类似上面的那些体会,在教学整数四则混合运算时曾经有过.教学分数四则混合运算,再次体会运算顺序的合理性、必要性和可操作性是认知的需要.而且,获得这些体会并不困难.第二个收获是两种解法的结果相同,不但相互印证解答正确,还为理解运算律创造了具体的背景.在教学运算顺序时还要注意两点: 一是让学生看着列出并计算的两道综合算式,说说分数四则混合运算的运算顺序,使解决实际问题得到的体会成为十分清楚的数学知识;二是引导学生回忆整数四则混合运算顺序,并和分数四则混合运算顺序相比较,看到两者的相同,使它们和谐结合,从而对运算顺序形成更具概括性的认识.比较两种解法之间的联系是感受运算律的存在,比较哪种方法简便是引导简便运算.需要说明的是,第三单元计算分数连乘,把各个乘数的分子、分母交*约分,已经在应用乘法交换律和结合律,所以本单元着重体会乘法分配律.教学时要处理好三点:首先是观察、讲述两种解法的联系,要让学生说说怎样把其中一道综合算式改写成另一道综合算式,加强对乘法分配律的理解和表述.然后是回忆分数连乘,让学生感受以前的计算已经应用了乘法的另两条运算律.如1/41/39/10,交*约分时应用了乘法结合律,只是没有写出1/4(1/39/10);又如2/31/53/4,约分时应用了乘法交换律,只是2/33/41/5这个过程没有写出来.最后才总结出整数的运算律在分数运算中同样适用,即分数乘法也存在交换律、结合律、分配律,运算律也能使一些计算变得简便.应用乘法分配律进行简便运算,例1仅作些引导,要通过练习才能掌握.和整数、小数范围内应用乘法分配律简便计算相比,这里的计算往往有两个特点:一是隐蔽,如6/57/6-1/56/7.这是一道两数之积减两数之商的题,似乎与运算律对不上号.如果把分数除法转化成分数乘法,就显露出两个乘法算式有相同的因数,具备应用乘法分配律的必要条件.二是易混,如44/5+4/54.粗糙地看这道计算题,它的两道除法算式似乎很有联系,稍不留心就陷入简算误区.只有细心地把分数除法变成乘法,才会明白这道题不适宜应用分配律.本单元教材设计简便运算的练习题,注意了这两个特点.另外,还把按运算顺序计算和应用运算律简便计算混合编排,如第92页第2题.让学生设计各道题的算法,是培养计算能力的一种有效手段,也是促进思路灵活、反应灵敏的一种训练.二、 数形结合教学较复杂问题的数量关系.例2和例3是稍复杂的分数乘法应用题,它们都含有求一个数的几分之几是多少的数量关系.说它们稍复杂,是因为还分别含有其他的数量关系,有多种解法.就例2来说,可以根据运动员总人数减男运动员人数得女运动员人数列出算式45-455/9;也可以根据女运动员人数占运动员总人数的(1-5/9)列出算式45(1-5/9).再说例3,可以根据去年班级数加今年比去年多的班级数得今年的班级数列出算式24+241/4;也可以根据今年的班级数是去年的(1+1/4)列出算式24(1+1/4).教学这两道例题,教材里只出现前一种解法.因为这种解法的数量关系,是实际问题中最基本的数量关系,学生比较熟悉,已经掌握,容易寻找.而且,这些数量关系还是列方程解答其他分数、百分数应用题的基本关系,在以后的教学直至初中数学里经常应用.至于后一种解法,发展了对一个数的几分之几的认识,从一个已知的分率联想了其他的分率.如果学生能够独立想到,并且喜欢这样列式,应该是允许的.教材不出现后一种解法,不把它教给学生,是着眼今后,突出重点,减轻负担.两道例题都利用线段图直观表达数量关系,帮助学生形成解题思路.例2已经画出了表示六年级参加学校运动会的人数的线段,学生在线段上表示男运动员占5/9的时候,会想到线段的另一部分表示的是女运动员人数,从而得到先算男运动员有多少人的思路.例3已经画出表示去年班级数的线段,要求学生继续画表示今年班级数的线段,从中体会今年班级数比去年多1/4的含义,看清今年班级数与去年班级数之间的关系,想到可以先算今年增加了几个班.教材引导学生画线段图,其目的不仅是帮助理解例题的数量关系和解题步骤,还要积累画线段图的体会和经验.以后解决实际问题,尤其是完成练一练和练习十六里的习题时,若有需要,能主动地通过画图帮助思考.为此,要加强画线段图的教学.首先让学生理解,先画出表示运动员总人数的线段和表示去年班级数的线段,才能继续表示男运动员人数和今年的班级数.这是分析男运动员占5/9以及今年班级数比去年增加1/4这两个分数的意义,得出的画图思路.其次让学生理解,男运动员是运动员总人数的一部分,可以表示在运动员总人数的线段图上.而今年的班级数与去年的班级数之间是比较关系,不存在包含与被包含的关系,因此各画一条线段表示它们.最后让学生看着画成的线段图,复述实际问题的题意,从中获得解题思路,体会线段图是表示数量关系的手段,是解决实际问题的工具.练习十六里设计了一些题组,通过解题和比较,能进一步理解数量关系,明确解题思路.第4题的两问是连续的,先求得已经铺设的米数,就能继续求还要铺设的米数.比较这两问,能明白前一问里求840米的3/5是多少,后一问是从电缆总长里去掉已经铺设的米数.第8题的两小题分别是面粉比大米少1/5和面粉比大米多1/5,比较两个分数的意义,能理解两个问题的解法有何不同,以及为什么不同.第12题的两小题里都有1/4,一道题里是用去1/4,另一道题里是还剩1/4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论