




免费预览已结束,剩余21页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省保靖县水田河镇民族中学八年级数学下册勾股定理表格式教案 湘教版题 目总课时7学 校教者设计来源2011年教材分析本章主要研究勾股定理与其逆定理,包括它们的发现、证明和应用.首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题.在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念.学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。教学目标1. 体验勾股定理的探索过程,会运用勾股定理解决简单的问题.2. 会运用勾股定理的逆定理判定直角三角形.3. 通过具体的例子,了解定理的含义;了解逆命题、逆定理的概念;知道原命题成了其逆命题不一定成立.重点勾股定理及其逆定理的探索与运用.难点勾股定理的证明,勾股定理及其逆定理的运用课前准备多媒体课件、小黑板等总体要求:1.“统一”设计“分段”教学;2.围绕“三维”落实“三问”;3.充实“心案”活化“形案”。教 学 设 计题 目 总课时3学 校教者年 级八年 学 科数学设计来源自我设计教学时间2011年4月11日 13日教材分析本节内容主要是著名的勾股定理,它是建立在三角形、全等三角形、等腰三角形等有关知识的基础上的,勾股定理揭示的是直角三角形中三边的数量关系,它是直角三角形的一条非常重要的性质,也是几何中最重要的定理之一,更重要的是,纵观初中数学,勾股定理架起了代数和几何间的桥梁,将数与形密切联系起来,实现了由角向边的跨越,是几何中一颗美丽的奇葩,可谓家喻户晓.学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。教学目标知识与技能:1.理解勾股定理的内容.2.运用勾股定理进行计算.3.运用定理解决实际问题.过程与方法:1.让学生经历探索勾股定理的过程,体会数形结合的思想.2.通过让学生画出数轴上的无理数的点,进一步体会数轴上的点与实数一一对应的理论.情感态度与价值观:通过学生的实际操作,培养学生的探究能力、画图能力和解决综合问题的能力,培养学生思维意识,体会勾股定理的应用价值,感受数学图形之美.重点探索和验证勾股定理,勾股定理的综合运用.难点勾股定理的灵活运用以及构造直角三角形.课前准备多媒体课件、小黑板等总体要求:1.“统一”设计“分段”教学;2.围绕“三维”落实“三问”;3.充实“心案”活化“形案”。教 学 流 程分课时环 节与时间教 师 活 动学 生 活 动设计意图资源准备评价反思第一课时创设情境激趣引新 5实验操作探求新知 20得出结论拓展应用 15反思小结观点提炼 5布置作业问题1:请同学们观察课本封面和本章章前彩图,说一说封面和彩图中的图形表示什么意思?它们之间有联系吗?问题2:图1是1955年希腊发行的一枚纪念一位数学家的邮票.你知道邮票上的图案所表示的意义吗?问题1:观察下图回答问题正方形a中含 个小方格;正方形b中含 个小方格;正方形c中含 个小方格.问题2:正方形面积之间的关系?在一般直角三角形中三边关系如何?验证勾股定理:介绍“勾、股、弦”,商高定理,毕达哥拉斯定理.小试身手:1.在rtabc中,c=90.(1)若a=8,b=6则c= (2)若c=20,b=12,则a= (3)若c=13,a=5,则b= 2.在rtabc中,a、b、c所对的边是a、b、c,且a=3、b=4,则c等于多少?1.勾股定理的内容2.勾股定理的用途3.涉及到的思想方法.习题18.1第1、2题学生认真观察、猜想学生观察、计算得出结论师生共同探索学生独立完成教师给予适当的提示后由学生完成提出问题,设置悬念,激发探究欲望,同时为解读图形秘密、探索勾股定理提供背景材料,对学生进行爱国主义教育.由特殊到一般的提出问题、解决问题,体会数形结合的思想.激发学生的探究热情,感受勾股定理证明的博大精深.为学生提供从事数学活动的机会,使学生对定理理解更加深刻.教 学 流 程分课时环 节与时间教 师 活 动学 生 活 动设计意图资源准备评价反思第二课时创设情境激趣引新 15探究新知构建模型 25反思小结观点提炼 5布置作业问题1:求图中的各直角三角形中指定的边.问题2:在长方形abcd中,若长ab为3cm,宽bc为2cm,试确定ac的长.探究1:一个门框的长为2m,宽为1m,一块长3米宽2.2米的薄木板能否从门框内通过?为什么?探究2:一个3m长的梯子ab,斜靠在一竖直的墙oa上,这时oa为2.5m,如果梯子的顶端a下滑0.5m,那么梯子底端b也外移0.5m吗?巩固练习:一棵树原高18米,折断后树的顶部落在树根底部6米处,这棵树断裂处离地面高为多少?1. 知识总结:两个模型:门框问题、梯子问题2. 思想方法归纳:数学建模思想、方程思想、转化思想.习题18.1第3、4、5题学生独立完成小组讨论、探究巩固勾股定理使学生意识到如何将数学知识应用于生活实际,激发学生应用数学的兴趣.培养学生处理问题的灵活性.正确运用勾股定理解释生活中的问题.教 学 流 程分课时环 节与时间教 师 活 动学 生 活 动设计意图资源准备评价反思第三课时创设情境以美引新 10循问探疑解决问题 25反思小结观点提炼 10请同学们欣赏美丽的海螺图案,在数学中也有这样一幅美丽的“海螺”图案!同学们知道是怎么画出来的吗?它是依据什么数学知识画出来的?问题:在数轴上表示练习:在数轴上表示的点.例1已知:在rtabc中,c=90,cdba于d,a=60,cd=,求线段ab的长.例2已知:abc中,ac=4,b=45,a=60根据题设补充一个所求未知元素,并求值.1.知识总结:用勾股定理作无理数表示的点“双垂图”的特点2.思想方法归纳:构造法、转化思想、数形结合学生观察、探究、讨论小组交流、探究设置美丽的海螺图案,以大自然的天然造化感染学生,在此基础上将数学之美嵌入,能实现感性的自然美向理性的数学美的迁移.对“双垂图”的性质进行大盘点,增强纵横联系.让学生进一步认识勾股定理的广泛应用.勾股定理学案(第一课时)学习目标:1体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法,掌握勾股定理并会用它解决身边与实际生活相关的数学问题。2在学生经历观察、归纳、猜想、探索勾股定理过程中,发展合情推理能力,体会数形结合思想,并在探索过程中,发展学生的归纳、概括能力。3通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识,体验获得成功的喜悦,通过介绍勾股定理在中国古代的研究情况,提高学生民族自豪感,激发学生热爱祖国、奋发学习的热情。重点、难点:重点:探索和验证勾股定理过程;难点:通过面积计算探索勾股定理。一温故知新1.直角三角形的性质:(1)直角三角形两锐角 ;(2)直角三角形斜边上的中线等于 ;(3)直角三角形中30的角所对的直角边等于 。2.分别求出下式中的x的值:x2=5 (x-2)2=5 4(2x-1)2=9二学习新知1.完成p65的探究,猜想得出的结论: 。2.分别用下面的图形证明上述结论(方法:面积法)4.在上面第4个图中画出剪裁线,拼成能证明勾股定理的图形,你能拼出几种?5完成p68-2,并对答案,由小组长给予评价。三运用新知,体验成功1、看图填空(图中的三角形都是直角三角形,四边形都为正方形) 正方形c的面积为 2、 rtabc中,=90,ab=c,ac=b,bc=a已知ac=6,bc=8,求ab.已知=15, =9,求. 已知c=17,b=8, 求a。已知a:b=1:2,c=5, 求a。已知b=15,a=30,求a,【合作探究】在rtabc中,有两边长为5,12,求第三边长及斜边上的高。四畅谈收获 通过本节课的学习,你有哪些收获?五、课堂检测1勾股定理的具体内容是: 2如图,直角abc的主要性质是:c=90,(用几何语言表示)两锐角之间的关系: ;若d为斜边中点,则斜边中线 ;若b=30,则b的对边和斜边: ;三边之间的关系: 。3、判断直角三角形中,两边的平方和等于第三边的平方( )rtabc中,,则( )4如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长是,则正方形a、b、c、d的面积和是 5、在rtabc,b=90,a=3,b=4,则c= 。在rtabc,c=90,c=10,a:b=3:4,则a= b= 。已知直角三角形的两边长分别为3cm和5cm,则第三边长为 。已知等边三角形的边长为2cm,则它的高为 ,面积为 勾股定理的应用(第一课时) 学习目标:1、 能运用勾股定理及直角三角形的判定条件解决实际问题2通过探索直角三角形的三边之间关系,培养学生积极参与、合作交流的意识。 知识探究cbacba知识点回顾:1、勾股定理:_数学式子: c=9002、神秘的数组(勾股定理的逆定理):_.数学式子: c=9003、满足a2b2c2三个数a、b、c叫做_。成果检测:1. 三角形的三边长为a,b,c且(a+b)2=c2+2ab,则这个三角形是( ) a. 等边三角形; b. 钝角三角形; c. 直角三角形; d. 锐角三角形.2. 已知两边为3,4,则第三边长_3. 一轮船在大海中航行,它先向正北方向航行8 km,接着,它又掉头向正东方向航行15千米 此时轮船离开出发点多少km? 若轮船每航行1km,需耗油0.4升,那么在此过程中轮船共耗油多少升?4.如图,已知abc中,ab=5cm,bc=12cm,ac=13cm,那么ac边上的中线bd的长为_cm. 第4题5. 如上右图,在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是多少米?检测反馈:1、台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市a的正南方向160千米b处有一台风中心,其中心最大风力为10级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东bc方向往c移动,城市到的距离和长之比为:,且台风中心风力不变,若城市所受风力达到或超过五级,则称为受台风影响.(1)该城市是否会受到这次台风的影响?请说明理由.(2)若受到台风影响,那么台风影响该城市持续时间有多少?2、如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是_米.3、如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是_米.4、如上右图,甲、乙两人在沙漠进行探险,某日早晨800甲先出发,他以6千米/时速度向东南方向行走,1小时后乙出发,他以5千米/时速度向西南方向行走,上午1000时,甲、乙两人相距多远? 勾股定理的应用(第二课时) 学习目标:能用勾股定理及逆定理解决一些问题,能规范的书写和表达过程。知识探究:一 讨论1 图中的分别等于多少?2 利用右图,画出长分别为的线段。3 如图,一连串直角三角形演化而成的图形,其中,如果把图中的直角三角形继续作下去,那么这些线段中有哪几条线段的长度为正整数,分别是多少?二 探索问题一:在如图1所示的直角三角形中,可求得=_,并可知两个锐角都是_,面积是_,周长是_,斜边上的高是_,中线是_.问题二:在如图2所示的直角三角形中,可求得=_,并可知两个锐角分别是_,面积是_,周长是_,斜边上的高是_,中线是_. 图1 图2 图3拓展:对于如图3所示的等边三角形,(1)若边长ab等于4cm,则高ad=_,面积等于_,(2)若中线be等于4cm,则边长ab=_,面积等于_.【成果检测】1一个三角形的三个角之比为1:1:2,则它的三边之比为 2若一个三角形的边长分别是12、16和20,则这个三角形最长边上的高为 3在abc中,ab=15,ac=20,bc边上的高ad=12,试求abc的面积(两解)4.已知:如图,在abc中,d为边bc上的一点,ab=13,ad=12,ac=15,bd=5。求abc的周长和面积。5.某农民开垦出一块三边长分别为7m,8m,9m三角形地块准备种植花生,聪明的同学你能帮他算一算这块地的面积吗?【检测反馈】1、小明和小强的跑步速度分别是6m/s和8m/s,他们同时从同一地点分别向东、南练习跑步,那么从出发开始需_s可以相距160m。2、已知一个直角三角形的两边长分别为5和12,则其周长为 。3、旗杆上的绳子垂到地面还多出1m,如果把绳子的下端拉开距旗杆底部5m后,绷紧的绳子的末端刚好接触地面,则旗杆的高度为_m.4、如下左图,已知:在rtabc中,acb=90,ac=12,bc=5,am=ac,bn=bc,则mn=_。5.如上右图,校园内有两棵树,相距12米,一棵树高16米,另一棵树高11米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞_米勾股定理应用学案(三) 一、学习目标1会用勾股定理解决较综合的问题。2树立数形结合的思想。二、重点、难点1重点:勾股定理的综合应用。2难点:勾股定理的综合应用。三、课堂引入复习勾股定理的内容。本节课探究勾股定理的综合应用。四、例习题分析例1(补充)1已知:在rtabc中,c=90,cdbc于d,a=60,cd=,求线段ab的长。例2(补充)已知:如图,abc中,ac=4,b=45,a=60,根据题设可知什么?例3(补充)已知:如图,b=d=90,a=60,ab=4,cd=2。求:四边形abcd的面积。分析:如何构造直角三角形是解本题的关键,可以连结ac,或延长ab、dc交于f,或延长ad、bc交于e,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。教学中要逐层展示给学生,让学生深入体会。小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。六、课堂练习1abc中,ab=ac=25cm,高ad=20cm,则bc= ,sabc= 。2abc中,若a=2b=3c,ac=cm,则a= 度,b= 度,c= 度,bc= ,sabc= 。3abc中,c=90,ab=4,bc=,cdab于d,则ac= ,cd= ,bd= ,ad= ,sabc= 。4已知:如图,abc中,ab=26,bc=25,ac=17,求sabc。七、课后练习1在rtabc中,c=90,cdbc于d,a=60,cd=,ab= 。2在rtabc中,c=90,sabc=30,c=13,且ab,则a= ,b= 。3已知:如图,在abc中,b=30,c=45,ac=,求(1)ab的长;(2)sabc。教 学 设 计题 目 18.2勾股定理的逆定理总课时3学 校教者年 级八年 学 科数学设计来源自我设计教学时间2011年4月14日 18日教材分析本大节是勾股定理的逆定理,它是在学过勾股定理的基础上进行的.教科书以古埃及人的做法为出发点,让学生画出一些两边的平方和等于第三边的平方的三角形,可以发现画出的三角形是直角三角形.从而猜想如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形是直角三角形.这个猜想可以利用三角形的全等来证明,从而得到勾股定理的逆定理.学情分析勾股定理的逆定理所给出的判定一个三角形的方法,与前面学过的一些方法不同。它通过代数运算“算”出来。实际上利用计算证明几何问题学生已经见过,所以本节课的学习可以开阔学生的视野。教学目标知识与技能:1.理解并掌握勾股定理的逆定理的证明方法.灵活应用勾股定理及逆定理解决实际问题.2.理解原命题、逆命题、逆定理的概念及关系.过程与方法:1.经历直角三角形判别条件的探究过程,体会命题、定理的互逆性,渗透合情推理的数学意识.2.在解决问题的过程中,继续体验模型的思想方法,培养学生与他人交流、合作的意识.情感态度与价值观:培养学生数学思维以及合情推理意识,感悟勾股定理及逆定理的应用价值.重点理解并掌握勾股定理的逆定理,并会应用其解决综合的实际问题.难点1. 勾股定理的逆定理的证明.2. 互逆命题和互逆定理的概念.课前准备多媒体课件、三角板、小黑板等总体要求:1.“统一”设计“分段”教学;2.围绕“三维”落实“三问”;3.充实“心案”活化“形案”。教 学 流 程分课时环 节与时间教 师 活 动学 生 活 动设计意图资源准备评价反思第一课时创设情境导入新课 10明晰概念证实发现 15范例点击演练提高 15反思小结观点提炼 5布置作业问题1:求以线段a、b为直角边的直角三角形斜边c的长(单位:cm).(1)a=3,b=4;(2)a=2.5,b=6;(3)a=4,b=7.5.问题2:分别以上述a、b、c为边的三角形的形状会是什么样子的?问题3:是不是只有三边长为3、4、5的三角形才能构成直角三角形?问题1:命题1、命题2的题设和结论分别是什么?问题2:请同学们举出一些互逆命题,并思考:是否原命题正确,它的逆命题也正确呢?举例说明.问题3:由以上发现,原命题正确,其逆命题不一定正确,那我们发现的勾股定理的逆命题一定正确吗?还需要我们做什么?问题4:已知,如图,abc中,ab=c,ac=b,bc=a.且a2+b2=c2,求证:c=90.例1判断由线段a、b、c组成的三角形是不是直角三角形?(1)a=15,b=17,c=8;(2)a=13,b=15,c=14.练习:请完成以下未完成的勾股数:(1)5、12、 (2)10、26、 说出下列命题的逆命题并判断是否正确:(1)两条直线平行,内错角相等;(2)如果两个实数相等,那么它们的绝对值相等.知识总结思想方法归纳习题18.2第3、5题学生思考后回答学生分成四人组,互相交流,然后举手发言.学生独立完成总结后学生回答巩固勾股定理的知识.在学生充分的举例、交流的基础上,提供素材让学生再认识.在提出的探究问题的基础上,做好分析、引导,督使学生思考,然后再提问个别学生。通过学生操作、观察、验证两个三角形全等,从中孕育了辅助线的添加为逻辑论证作好了铺垫.培养学生的语言表达能力和总结归纳能力.教 学 流 程分课时环 节与时间教 师 活 动学 生 活 动设计意图资源准备评价反思第二课时创设情境,导入课 题类比发现体验新知 10研究新知、应用举例课 堂练 习小 结布 置作 业创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法实验观察。p75页例2分析:(1)了解方位角,及方位名词;(2)依题意画出图形;(3)依题意可得pr=121.5=18;pq=161.5=24, qr=30;(4)因为242+182=302,pq2+pr2=qr2,根据勾股定理 的逆定理,知qpr=90;(5)prs=qpr-qps=45。例1(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。1小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是 。本节课中有什么收获?完成教师出示的问题学生分组讨论学生独立完成由实际问题引出勾股定理的逆定理的内容引导学生善于使用类比这一思想方法,树立起这种观念.教 学 流 程教 学 流 程分课时环 节与时间教 师 活 动学 生 活 动设计意图资源准备评价反思第三课时课 堂引 入例 题分 析课 堂练 习小 结创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法实验观察。p75页例2分析:(1)了解方位角,及方位名词;(2)依题意画出图形;(3)依题意可得pr=121.5=18;pq=161.5=24, qr=30;(4)因为242+182=302,pq2+pr2=qr2,根据勾股定理 的逆定理,知qpr=90;(5)prs=qpr-qps=45。例1(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。1小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是 。本节课中有什么收获?完成教师出示的问题学生分组讨论学生独立完成,然后交流意见。让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。引导学生善于使用类比这一思想方法,树立起这种观念.勾股定理的逆定理学案(第一课时) 一、学习目标1体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。2探究勾股定理的逆定理的证明方法。3理解原命题、逆命题、逆定理的概念及关系。二、重点、难点1重点:掌握勾股定理的逆定理及证明。2难点:勾股定理的逆定理的证明。三、引入你还记得吗?: 怎样判定一个三角形是等腰三角形?怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。练一练1、说出下列命题的逆命题,这些命题的逆命题成立吗?同旁内角互补,两条直线平行。如果两个实数的平方相等,那么两个实数平方相等。线段垂直平分线上的点到线段两端点的距离相等。直角三角形中30角所对的直角边等于斜边的一半。归纳:由以上发现原命题正确,其逆命题不一定正确,那我们发现的勾股定理的逆命题一定正确吗?还需要我们做什么?问题1、求以线段a、b、为直角边的直角三角形的斜边c的长(单位:cm)。(1) a=3,b=4;(2) a=2.5,b=6;(3) a=4,b=7.5问题2:分别以上述a、b、c为边的三角形的形状会是什么样子的?猜想并验证。命题2 如果三角形的三边长a、b、c满足a2+b2=c2 那么这个三角形是直角三角形。问:这个命题和上节课的命题1有什么关系吗?你能证明这个命题吗?探究:(课本74页)证明:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形。结论:通过证明勾股定理的逆命题是正确的,它也是一个定理,我们把这个定理叫做勾股定理的逆定理。例:已知:在abc中,a、b、c的对边分别是a、b、c,a=n21,b=2n,c=n21(n1)求证:c=90。分析:运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:先判断那条边最大。分别用代数方法计算出a2+b2和c2的值。判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。要证c=90,只要证abc是直角三角形,并且c边最大。根据勾股定理的逆定理只要证明a2+b2=c2即可。证明:课堂练习:1在abc中,ab=13cm,ac=24cm,中线bd=5cm。求证:abc是等腰三角形。勾股定理的逆定理学案(第二课时) 一、学习目标1探究勾股定理的逆定理的证明方法。2理解原命题、逆命题、逆定理的概念及关系。3.应用勾股定理的逆定理解决实际的问题。二、重点、难点1重点:掌握勾股定理的逆定理及证明。2难点:勾股定理的逆定理的证明。一课前练习。在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。命题:“在一个三角形中,有一个角是30,那么它所对的边是另一边的一半。”的逆命题是真命题。勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。abc的三边之比是1:1:,则abc是直角三角形。2叙述下列命题的逆命题,并判断逆命题是否正确。如果a30,那么a20;如果三角形有一个角小于90,那么这个三角形是锐角三角形;如果两个三角形全等,那么它们的对应角相等;关于某条直线对称的两条线段一定相等。二知识巩固。任何一个命题都有 ,但任何一个定理未必都有 。“两直线平行,内错角相等。”的逆定理是 。在abc中,若a2=b2c2,则abc是 三角形, 是直角;若a2b2c2,则b是 。若在abc中,a=m2n2,b=2mn,c= m2n2,则abc是 三角形。(5)请完成以下未完成的勾股数: 5、12、 10、26、 (6)abc中,a2+b2 =25, a2-b2=7,又c=5,则最大边是 。三.合作学习:1abc中a、b、c的对边分别是a、b、c,下列命题中的假命题是( )a如果cb=a,则abc是直角三角形。b如果c2= b2a2,则abc是直角三角形,且c=90。c如果(ca)(ca)=b2,则abc是直角三角形。d如果a:b:c=5:2:3,则abc是直角三角形。2已知:在abc中,a、b、c的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角? a=3,b=4,c=5; a=5,b=7,c=9;a=2,b=3,c=4; a=5,b=7,c=1。3已知:在abc中,a、b、c的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?a=9,b=41,c=40; a=15,b=16,c=6;a=2,b=,c=4; a=5k,b=12k,c=13k(k0)。4、(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。勾股定理的逆定理学案(第三课时) 一、学习目标:1掌握勾股定理的逆定理。2.应用勾股定理的逆定理解决实际的问题。二、重难点:利用勾股定理的逆定理解决实际的问题。课堂练习:1小强在操场上向东走80m后,又走了60m,再走100m回到原地。小强在操场上向东走了80m后,又走60m的方向是 。2如图,在操场上竖直立着一根长为2米的测影竿cd,早晨测得它的影长bd为4米,中午测得它的影长ad为1米,则a、b、c三点能否构成直角三角形?为什么?3在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的a、b两个基地前去拦截,六分钟后同时到达c地将其拦截。已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40,问:甲巡逻艇的航向?4一根24米绳子,折成三边为三个连续偶数的三角形,则三边 长分别为 ,此三角形的形状为 。5一根12米的电线杆ab,用铁丝ac、ad固定,现已知用去铁丝ac=15米,ad=13米,又测得地面上b、c两点之间距离是9米,b、d两点之间距离是5米,则电线杆和地面是否垂直,为什么?例题讲解:例1(补充)已知:在abc中,a、b、c的对边分别是a、b、c,满足
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司文明诚信活动方案
- 2025年药品安全管理考试试题及答案
- 2025年医疗卫生系统综合能力考试试卷及答案
- 2025年心理治疗师认证考试试卷及答案
- 2025年现代职业教育理论与实践考试试卷及答案
- 2025年特殊教育教师资格考试卷及答案
- 2025年数字内容运营人才招聘考试试卷及答案
- 2025年人际传播与关系管理考试试卷及答案
- 追寻生命意义与心理健康
- 做一个身心健康的中学生
- 2024年秋儿童发展问题的咨询与辅导终考期末大作业案例分析1-5答案
- 公安辅警合同模板
- 大学生创新创业教育(2023秋学期)学习通超星期末考试答案章节答案2024年
- 中建2024装配式建筑+铝模一体化施工技术手册
- 农作物四级种子生产技术规程 第1部分:小麦DB41-T 293.1-2014
- TSG ZF001-2006《安全阀安全技术监察规程》
- 自动寻优控制系统在生料立磨中的应用实践
- 土地延期合同范本
- 四川省绵阳市涪城区2024-2025学年七年级上学期开学考试语文试题(解析版)
- DL∕T 796-2012 风力发电场安全规程
- 部编版八年级升九年级历史暑假预习知识清单(填空+答案)
评论
0/150
提交评论