外文翻译--驱动桥相关介绍_第1页
外文翻译--驱动桥相关介绍_第2页
外文翻译--驱动桥相关介绍_第3页
外文翻译--驱动桥相关介绍_第4页
外文翻译--驱动桥相关介绍_第5页
已阅读5页,还剩7页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

附 录 附录 A Driver introductions Bridge 1. Features: Drive Bridge at the end of powertrain, and the basic function of which is to increase came from the drive shaft or transmission of torque, and a reasonable distribution of power to the left and right driving wheel, and also bear in the role of the frame or the road and Legislative body between the vertical, horizontal and vertical of power. Driven by the general bridge reducer, differential, wheels, transmission and drive axle housings and other components. 2. The bridge design driver: ( 1) Drive bridge design should meet the following basic requirements:( 1) . Choice of the reduction ratio should be able to guarantee that vehicles have the power and the best fuel economy. ( 2) . Dimensions small to ensure that the necessary ground clearance.( 3) . Transmission gears and other pieces of work stable and noise. ( 4) . Under various load and speed with high transmission efficiency.( 5) . Guarantee sufficient strength, rigidity conditions, should strive for quality small, particularly unsprung mass should be as small as possible to improve vehicle ride comfort. ( 6) . Oriented suspension and coordination of movement, to the drive axle, and the steering mechanism should be coordinated with campaigns. ( 7) . Simple structure, and processing of, and easy to manufacture, enables easy adjustment. 3. Drive Bridge Category 3.1 non-driving axle-disconnect Disconnect-general non-driving axle, simple structure, low cost, reliable, widely used in a variety of truck, bus and the bus, in the majority of off-road vehicles and some cars also adopt this structure. Their specific structure, in particular the shell structure while the bridge is not the same, but there is one common characteristic is that Shell is a bridge support in the drive wheel about the rigid hollow beam, and the half-axle gear transmission components, such as installation of one of them. Then the whole drive axle, drive shaft driven wheel and some are in unsprung mass, larger vehicles unsprung mass, which is one of its shortcomings. Drive Axle size depends primarily on the outline of the main types reducer. In the tire size and drive underneath the minimum ground clearance has been determined by circumstances, it defines the diameter of the driven gear reducer size. Ratio of a given condition, if the single-stage reducer can not meet the requirements of ground clearance, with the dual-class structure. In the two-stage reducer, the two usually on a main gear reducer shell reducer, can also slow gear as a second-class round-reducer. The round-reducer: In order to improve cross-country motor vehicle ground clearance, can be a spur gear consisting of round-gear reducer initiatives under its follower of the vertical top gear; buses to reduce vehicle height and the center of mass of train floors height, so as to enhance stability and the convenience of the passengers get on and off, can be round-gear reducer initiatives under its vertical driven gear beneath some double-decker bus in order to further reduce the compartment floor height in a round-Gear reducer At the same time, the main reducer and differential assembly also moved to the drivers side wheel. In a few large-scale high-speed bus engine, multi-bridge drive vehicle and ultra-heavy laden car, and sometimes used for the worm reducer, it not only has the quality of small, compact size of circumstances can be large and transmission ratio Smoothing the merits of silent work, and the overall layout of the car is very convenient. 3.2-drive axle disconnect Disconnect-drive axle different from the non-driving axle-disconnect the obvious characteristics of a connection is that the former does not drive the wheels about the rigidity of the overall casing or beam. Disconnect drive bridge is the bridge sub-shell, and can be done between the relative motion, such as off-the bridge. In addition, it always match with independent suspension, it is also known as the independent suspension bridge driver. The middle of this bridge, the main reducer and differential, are mounting in the frame beams inside or on the floor, or backbone of the frame. Lord reducer, and the driveshaft and differential wheel drive part of the quality of transmission quality on all spring. As both sides of the drive wheel independent suspension can be used to the site relative to each other frame for the upper and lower compartments or swing, with a corresponding demand on the drive wheel and the gear casing or casing for the corresponding swing. The hoisting of the type of vehicle assembly and elastic damping device components and characteristics of the work is to determine vehicle ride comfort of the main factors, and the quality of auto parts spring the size of their ride also have a marked impact. Disconnect-drive axle unsprung mass smaller, independent suspension with the match, which drive the wheels of contact with the ground and on all-terrain better adaptability, which can greatly reduce car running on uneven road vibration and the tilt train, travelling to the vehicles ride and the average driving speed, reducing the wheels and axles on the dynamic load and parts, increasing its reliability and service life. However, due to disconnect the drive Bridge and the independent suspension with the match of the complex structure, this structure is mainly seen on the ride comfort of the higher part of sedans and some off-road vehicle, and the latter more than a light following riders Bridge drive vehicles or heavy-duty off-road vehicle. 3.3 Bridge over drive layout In order to improve loading and adoption of some medium - and heavy-duty vehicles and all over the use of off-road vehicles are driven more bridge, and often used 4,6 4 8 such as 6,8-driven type. Multi-Bridge driver in the circumstances, the driving force at the drive actuator pass in the way the two bridges. The two corresponding power transmission, the Multi-Bridge drive vehicle driving axle layout patterns into non-hollow and hollow. The former in order to force the pass at the drive actuator bridge to the actuator from the drive axle by its own dedicated power transmission drive shaft, not only to increase the number of drive shaft, and the cause of the drive axle Bridge parts in particular Shell, and other major parts Semiaxle not universal. On the 8 8 vehicle, this non-drive-through bridge is even more inappropriate, but also a difficult layout. In order to solve the above problems, modern bridges are used in cars driven through the drive axle-type layout. In the drive-through layout of the bridge, the bridge driveshaft layout in the same vertical longitudinal plane, and were not the driving axle drive shaft and use their own sub-actuator directly connected, but in front of the actuator or the back of the two adjacent bridge driveshaft is the tandem arrangement. The two ends of the car after driving axle impetus by the actuator and transmission through the middle of the bridge. The advantage is not only reduce the number of drive shaft, but also increase the driving axle parts of the mutual general, and to simplify the structure, reducing the size and quality. This vehicle design (such as car variant), manufacturing and maintenance, convenient 4. Drive axle components Driven mainly by the main bridge reducer, differential, half-axle and drive axle housings and other components. 1. Lord reducer Reducer to change the general direction of transmission, reduce speed and increase torque to ensure that there are sufficient vehicles and the driving force of the appropriate speed Paper. Reducer more main types, single-stage, two-stage, two-speed, such as round-reducer. (1) single-stage main reducer By achieving a gear reducer deceleration devices, known as a single-stage reducer. Its structure is simple, light weight, Dongfeng BQl090 type light, widely used on medium-duty truck. ( 2) Two-stage main reducer Some of the larger truck load for a slowdown than larger, single-level main reducer drive, moving from the diameter of gear must be increased, it will affect the drive axle ground clearance, a two-reducer . Often referred to as the two-stage reducer. There are two double-reducing gear reducer, to the two-twisting by deceleration. To enhance the meshing of gears cone smooth and strength, the first vice-gear reducer is spiral bevel gears. Two helical gear is the result of Vice gear. Active bevel gear rotation, led a round-driven rotary gear, thus completing a slowdown. Second-class deceleration initiative Gear Driven and bevel gear and a rotating coaxial, and driven gear driven rotary cylinder, a second-class deceleration. Driven by cylindrical gear installed in the differential case, therefore, when the follower cylinder gear rotates, and through the half axle differential rotation that drive the wheels. 2. Differential About half axle differential to connect, to enable both sides of the wheels at different angular velocity of rotation torque transmission. Guarantee the normal wheels rolling. Some bridges-driven cars, in the actuator or in the hollow shaft of the transmission are available differential, known as bridge between differential. Its role in the automotive turn or uneven traffic on the road, before and after the drive wheel differential between role. At present domestic cars and other types of vehicles in the basic use of the symmetrical cone ordinary differential gear. Symmetric bevel gear from the planetary gear differential, half axle gear, planetary gear shaft (axle or a direct cross-axis) and differential shell components. Most car-use planetary gear differential, ordinary differential bevel gear cone by two or four planetary gears, gear shaft, the two conical about half axle differential gear and shell components. 3. Semiaxle Semi-axle differential is the torque came to pass wheels, rotating wheel drive, and promote car travelling solid shaft. Since the installation of wheels different structures, and the force Semiaxle also different. Therefore, Semiaxle divided into floating, semi-floating, 3 / 4 floating three types. (1) Full-floating Semiaxle Generally large and medium-sized cars are used all floating structures. Semiaxle end of the spline and with the half-axle differential gear connected to the outer end Semiaxle forging a flange, with bolts and wheels connected. Wheel through two further away from the text of Tapered Roller Bearings for the half axle casing. Semiaxle bridge shell casing pressure and after one match, composition drive axle housings. Supporting the use of such forms, and the bridge shell Semiaxle not directly linked to Semiaxle driving torque not only bear to bear any moment, such Semiaxle called the floating half axle. The so-called floating that is not half axle bending load. Floating Semiaxle all, the end-to-flange and shaft into one. But there are also some truck into separate parts of the flange, and a set of keys to spend half axle, in the end. As a result, the two ends are Semiaxle spline can be used for the first. (2) semi-floating Semiaxle Semi-axle semi-floating with all of the floating-the same does not bear bending and torsion. Aloof-supported through a direct bearing on the inside half axle casing. Supporting this approach will bear moment Semiaxle outer end. Therefore, in addition to this Banxiu torque transmission, but also to sustain local moment, the semi-called floating Semiaxle. This structure type mainly used for small buses. (3), 3 / 4 floating Semiaxle 3 / 4 floating Semiaxle is subject to the degree of bending short range semi-floating and the entire floating between. Application of this type currently Semiaxle little Xiaowoche only on the individual applications, such as Warsaw M20 car. 附录 B 驱动桥相关介绍 一 功能 : 驱动桥处于动力传动系的末端,其基本功能是增大由传动轴或变速器传来的转矩,并将动力合理的分配给左、右驱动轮,另外还承受作用于路面和车架或车身之间的垂直立、纵向力和横向力。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。 二 驱动桥的设计: 驱动桥设计应当满足如下基本要求: 1.选择的主减速比应能保证汽车具有最佳的动力性和燃料经济性。 2.外 形尺寸要小,保证有必要的离地间隙。 3.齿轮及其他传动件工作平稳,噪声小。 4.在各种转速和载荷下具有高的传动效率。 5.在保证足够的强度、刚度条件下,应力求质量小,尤其是簧下质量应尽量小,以改善汽车平顺性。 6.与悬架导向机构运动协调,对于转向驱动桥,还应与转向机构运动相协调。 7.结构简单,加工工艺性好,制造容易,拆装、调整方便。 三驱动桥的分类 3.1 非断开式驱动桥 普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种 结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。 驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也 可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。 在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型载货汽车上,有时采用蜗轮式主减速器,它不仅具有在质量小 、尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。 3.2 断开式驱动桥 断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱动车轮的刚性整体外壳或梁。断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所以这种桥称为断开式的。另外,它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横粱或车厢底板上,或与脊梁式车架相联。主减速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采 用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。 汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺性的主要因素,而汽车簧下部分质量的大小,对其平顺性也有显著的影响。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情况及对各种地形的适应性比较好,由此可大大地减小汽车在不平路面上行驶时的振动和车厢倾斜,提高汽车的行驶平顺性和平均行驶速度,减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。但是,由 于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对行驶平顺性要求较高的一部分轿车及一些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。 3.3 多桥驱动的布置 为了提高装载量和通过性,有些重型汽车及全部中型以上的越野汽车都是采用多桥驱动,常采用的有 4 4、 6 6、 8 8 等驱动型式。在多桥驱动的情况下,动力经分动器传给各驱动桥的方式有两种。相应这两种动力传递方式,多桥驱动汽车各驱动桥的布置型式分为非贯通式与贯通式。前者为了把动力经分动器传给各驱动桥,需分别由分动器经各驱动桥 自己专用的传动轴传递动力,这样不仅使传动轴的数量增多,且造成各驱动桥的零件特别是桥壳、半轴等主要零件不能通用。而对 8 8 汽车来说,这种非贯通式驱动桥就更不适宜,也难于布置了。 为了解决

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论