


免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学资料参考六年级数学教案认识分数的本质- 1 -从数学发展史看,分数产生于人类的测量活动,而且人类认识分数是从认识分数单位开始的.测量一张三人沙发的长度,如果没有现成的尺子,可以自选一个度量单位,如用一条领带的长为度量单位进行测量,测得三人沙发的长恰好等于这条领带长的2倍,即三人沙发的长领带的长22(领带的长).量度量单位量数.测量一张单人沙发的长度,发现它还不足一条领带的长.怎么办呢?办法是缩小度量单位.把这条领带对折两次,即以这条领带长度的四分之一()为度量单位时,单人沙发的长恰好等于它的3倍,即单人沙发的长领带的长的3(领带的长)量度量单位量数.在测量单人沙发时,我们用到了比自然数1更小的度量单位(把自然数1平均分成4份,表示其中的一份的数是).这里,分数和表示不同的长度(量),其中,是分数单位,表示3个,或的3倍.所以,用分数单位度量一个量时,所得的结果一般是用分数表示的.也可以说,分数是由量与分数单位(度量单位)的倍比关系产生的.分数单位的重要性可见一斑.想一想:已知用1为单位度量三人沙发的长时,量数是2,沙发的长是多少?那么用为单位度量这张三人沙发的长,量数是几?这张三人沙发的长度是几分之几?如果用为单位去度量这张三人沙发的长呢?下面的表格,同样可以表征上述数学问题:三人沙发的长度度量单位量数?12?下面双重刻度的线段,也可以表征上述的数学问题:经过上述作业,能充分体验量、度量单位、量数三者的基本关系:量度量单位量数;同时,还会发现:2.再想一想:用为单位去度量一张双人沙发的长,如果所得的量数是6,那么这张双人沙发的长度可以用什么分数表示?上面这个数学问题,用线段图表征如下:二、分数产生的现实背景之二-分物用自然数1表示1个物体,把它平均分成若干份,表示其中一份的数,叫做分数单位.用自然数1表示由许多物体组成的一个整体时,把它平均分成若干份,表示其中一份的数,也是分数单位吗?把8个饼平均分成4份,其中每份都有2个饼.如果把2(部分量)作为度量单位,去度量8(整体)时,量数是4;也就是说,8是2的4倍.如果把8作为单位1,去度量2时,量数是;这个分数描述的是同一个量中整体与部分的倍比关系,它本身不是一个量,当然也就不具有充当分数单位的资格.所以,同一个分数,具有两种不同的意义:一可以用来表示一个量,当它表示量时,它还是计量的单位(分数单位);二是可以用来表示量数,即表示两个量(整体与部分)的倍比关系.事实上任何分数都具有这两种意义.笼统地,把单位1平均分成若干份,表示其中一份的数,叫做分数单位.这个定义的科学性是值得商榷的.如果把9个饼平均分给4个人,每人分得几个饼?这个实际问题通常被抽象为下面的数学问题:9平均分成4份,每份多少?解法一:因为1平均分成4份,其中一份是;所以,9平均分成4份,每份是9个,即.算法如下:949(14)9.解法二:942.1,14,22,所以,942.上述两种算法,都涉及到一个基本的运算:14量量数度量单位.在教材中,是通过图形的直观操作得到结果的,但缺乏对操作过程的内涵抽象与概括,使学生不能看到分数与除法之间的本质联系.因此,学生的思维只能停留在经验的层面,他们的理论思维得不到应有的培养和发展.值得指出的是,当我们把实际问题中的4个人抽象成4份的时候,其中4的意义,从表示量(人数)变换成表示量数(份数)了.当我们掌握了比的概念后,上述的实际问题还可以抽象成下面的数学问题:9与4的比的比值是多少?其中9与4的实际意义都没有改变,它们分别表示两个不同的量.解:941.回到实际问题的情境,解释比值的实际意义,即表示每个人分得个饼.从这个例子,也许可以领略到一点产生比的概念的必要性.三、分数产生的现实背景之三-比较两个量的比较有两种图式:一是两个量的差比关系(第一学段学习的内容);二是两个量的倍比关系(第二学段学习的内容).一束鲜花,其中5朵白花,10朵红花.如果以白花的朵数为基准量进行比较,那么红花的朵数是白花的2倍;如果以红花的朵数为基准量进行比较,那么白花的朵数是红花的.这里,2和都是量数,都表示两个量的倍比关系.上述量与量数之间的对应关系,也可以用下面的线段图直观表示:测量中的量、度量单位与量数之间的基本关系,可以衍变为在比较中的量、基准量、量数之间的数量关系,即量基准量量数.按下面的两种方法配制橙汁饮料:A4杯纯橙汁、3杯矿泉水;B5杯纯橙汁、4杯矿泉水.A、B两种橙汁饮料,哪种更甜一些?解决这类实际问题一般都有下列两种思维图式:求每杯水平均掺入几杯纯橙汁,掺入纯橙汗较多的饮料更甜一些.根据这种思维图式,以水的杯数为基准量,求纯橙汁的杯数是水的几倍.因此,从实际问题抽象出的数学问题是:比较分数与的大小.解法一:,.因为,所以.这个结果说明A种橙汁饮料更甜一些.解法二:1.33,1.25.因为1.331.25,所以.求每杯纯橙汁平均掺入几杯水,掺入水较少的饮料更甜一些.根据这种思维图式,以纯橙汁的杯数为基准量,求水的杯数是纯橙汁的几倍.因此,从实际问题抽象出的数学问题是,比较分数与的大小.解答这个数学问题也有类似于中的两种方法,结果是,说明A种饮料掺入的水较少,因此更甜一些.综上,从分数产生的三种现实背景,可以清楚地看到分数产生于量的倍比关系.分数概念的核心是量、度量单位(基准量)与量数的基本关系,即量度量单位(基准量)量数.因此,分数具有两种不同的意义:1分数可以表示量.表示量的分数,它或者是分数单位,或者是分数单位的整数倍.2分数可以表示量数.量数是以一个量为基准量去度量另一个量所得的结果,它是描述两个量倍比关系的一个数(自然数或分数).两个量的倍比关系又有下面四种类型:一个量中整体与部分的倍比关系;同类的两个量的倍比关系;一个量中各组成部分的倍比关系;不同类的两个量的倍比关系.从类型和,可以衍生出百分数的概念;从类型和可以衍生出比的概念.量基准量量数,这一基本关系有下面两个等价的形式:量基准量量数;量量数基准量.从形式上看,和都是两个数相除,但只有的情形才可以称为两个量的比.各种版本教材关于比都是这样定义的:两个数相除,又叫做这两个数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离婚协议中关于养老金分割与医疗费用承担补充协议
- 深化分析国际贸易合同磋商中的风险管理策略
- 正硅酸乙酯生产建设项目建设工程方案
- 新工科背景下工程实践课程体系的改革路径
- 家畜饲养考试试题及答案
- 建筑方案设计工作视频
- 设备检修工专业试题及答案解析
- 一、健康饮食好习惯说课稿-2025-2026学年小学综合实践活动沪科黔科版四年级上册-沪科黔科版
- 音乐七年级人音版 演唱 军民大生产说课稿
- §1 直线与直线的方程说课稿-2025-2026学年高中数学北师大版2011必修2-北师大版2006
- 2024年08月北京2024年建信养老金管理有限责任公司校园招考笔试历年参考题库附带答案详解
- 强信念 转作风 提能力 促发展 学习心得体会
- 朋友的古诗句
- 稳派教育2025届高考压轴卷英语试卷含解析
- 征信数据纠正服务合同
- 制造业生产管理:Excel2024版高效培训教程
- 漫展嘉宾合同模板
- 足球比赛-开幕式组织方案
- 电梯施工安全技术交底
- 高等传热学全册课件
- +初+中数学有理数的加减混合运算(教学课件)++七年级数学上册(华东师大版)
评论
0/150
提交评论