




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2.3直线的一般式方程学 习 目 标核 心 素 养1.掌握直线的一般式方程(重点)2.理解关于x,y的二元一次方程AxByC0(A,B不同时为0)都表示直线(重点、难点)3.会进行直线方程的五种形式之间的转化(难点、易混点)通过学习直线五种形式的方程相互转化,提升逻辑推理、直观想象、数学运算的数学素养.直线的一般式方程(1)定义:关于x,y的二元一次方程AxByC0(其中A,B不同时为0)叫做直线的一般式方程,简称一般式(2)适用范围:平面直角坐标系中,任何一条直线都可用一般式表示(3)系数的几何意义:当B0时,则k(斜率),b(y轴上的截距);当B0,A0时,则a(x轴上的截距),此时不存在斜率思考:当A0或B0或C0时,方程AxByC0分别表示什么样的直线?提示(1)若A0,则y,表示与y轴垂直的一条直线(2)若B0,则x,表示与x轴垂直的一条直线(3)若C0,则AxBy0,表示过原点的一条直线1在直角坐标系中,直线xy30的倾斜角是()A30 B60C150D120C直线斜率k,所以倾斜角为150,故选C.2若方程AxByC0表示直线,则A,B应满足的条件为()AA0 BB0CAB0 DA2B20D方程AxByC0表示直线的条件为A,B不能同时为0,即A2B20. 故选D3斜率为2,且经过点A(1,3)的直线的一般式方程为_2xy10由直线点斜式方程可得y32(x1),化成一般式为2xy10.4过P1(2,0),P2(0,3)两点的直线的一般式方程是_3x2y60由截距式得,所求直线的方程为1,即3x2y60.直线的一般式方程【例1】根据下列各条件写出直线的方程,并且化成一般式(1)斜率是,经过点A(8,2);(2)经过点B(4,2),平行于x轴;(3)在x轴和y轴上的截距分别是,3;(4)经过两点P1(3,2),P2(5,4)解(1)由点斜式得y(2)(x8),即x2y40.(2)由斜截式得y2,即y20.(3)由截距式得1,即2xy30.(4)由两点式得,即xy10.求直线的一般式方程的策略(1)当A0时,方程可化为xy0,只需求,的值;若B0,则方程化为xy0,只需确定,的值因此,只要给出两个条件,就可以求出直线方程(2)在求直线方程时,设一般式方程有时并不简单,常用的还是根据给定条件选用四种特殊形式之一求方程,然后可以转化为一般式提醒:在利用直线方程的四种特殊形式时,一定要注意其适用的前提条件1(1)下列直线中,斜率为,且不经过第一象限的是()A3x4y70B4x3y70C4x3y420D3x4y420(2)直线x5y90在x轴上的截距等于()A B5CD3(1)B(2)D(1)将一般式化为斜截式,斜率为的有:B、C两项又yx14过点(0,14),即直线过第一象限,所以只有B项正确(2)令y0则x3.由直线方程的一般式研究直线的平行与垂直【例2】(1)已知直线l1:2x(m1)y40与直线l2:mx3y20平行,求m的值;(2)当a为何值时,直线l1:(a2)x(1a)y10与直线l2:(a1)x(2a3)y20互相垂直?解法一:(1)由l1:2x(m1)y40,l2:mx3y20知:当m0时,显然l1与l2不平行当m0时,l1l2,需.解得m2或m3,m的值为2或3.(2)由题意知,直线l1l2.若1a0,即a1时,直线l1:3x10与直线l2:5y20显然垂直若2a30,即a时,直线l1:x5y20与直线l2:5x40不垂直若1a0且2a30,则直线l1,l2的斜率k1,k2都存在,k1,k2.当l1l2时,k1k21,即1,a1.综上可知,当a1或a1时,直线l1l2.法二:(1)令23m(m1),解得m3或m2.当m3时,l1:xy20,l2:3x3y20,显然l1与l2不重合,l1l2.同理当m2时,l1:2x3y40,l2:2x3y20,显然l1与l2不重合,l1l2,m的值为2或3.(2)由题意知直线l1l2,(a2)(a1)(1a)(2a3)0,解得a1,将a1代入方程,均满足题意故当a1或a1时,直线l1l2.1直线l1:A1xB1yC10,直线l2:A2xB2yC20,(1)若l1l2A1B2A2B10且B1C2B2C10(或A1C2A2C10)(2)若l1l2A1A2B1B20.2与直线AxByC0平行的直线方程可设为AxBym0,(mC)与直线AxByC0垂直的直线方程可设为BxAym0.2已知直线l的方程为3x4y120,求直线l的一般式方程,l满足(1)过点(1,3),且与l平行;(2)过点(1,3),且与l垂直解法一:由题设l的方程可化为yx3,l的斜率为.(1)由l与l平行,l的斜率为.又l过(1,3),由点斜式知方程为y3(x1),即3x4y90.(2)由l与l垂直,l的斜率为,又过(1,3),由点斜式可得方程为y3(x1),即4x3y130.法二:(1)由l与l平行,可设l方程为3x4ym0.将点(1,3)代入上式得m9.所求直线方程为3x4y90.(2)由l与l垂直,可设其方程为4x3yn0.将(1,3)代入上式得n13.所求直线方程为4x3y130.与含参数的一般式方程有关的问题探究问题1直线kxy13k0是否过定点? 若过定点,求出定点坐标提示kxy13k0可化为y1k(x3),由点斜式方程可知该直线过定点(3,1)2若直线ykxb(k0)不经过第四象限,k,b应满足什么条件?提示若直线ykxb(k0)不经过第四象限,则应满足k0且b0.【例3】已知直线l:5ax5ya30.(1)求证:不论a为何值,直线l总经过第一象限;(2)为使直线不经过第二象限,求a的取值范围思路探究:(1)当直线恒过第一象限内的一定点时,必然可得该直线总经过第一象限;(2)直线不过第二象限即斜率大于0且与y轴的截距不大于0.解(1)证明:法一:将直线l的方程整理为ya,直线l的斜率为a,且过定点A,而点A在第一象限内,故不论a为何值,l恒过第一象限法二:直线l的方程可化为(5x1)a(5y3)0.上式对任意的a总成立,必有即即l过定点A. 以下同法一(2)直线OA的斜率为k3.如图所示,要使l不经过第二象限,需斜率akOA3,a3.1本例中若直线不经过第四象限,则a的取值范围是什么?解由本例(2)解法可知直线OA的斜率为3,要使直线不经过第四象限,则有a 3.2本例中将方程改为“x(a1)ya20”,若直线不经过第二象限,则a的取值范围又是什么?解(1)当a10,即a1时,直线为x3,该直线不经过第二象限,满足要求(2)当a10,即a1时,直线化为斜截式方程为yx,因为直线不过第二象限,故该直线的斜率大于等于零,且在y轴的截距小于等于零,即解得,所以a1.综上可知a1.直线恒过定点的求解策略(1)将方程化为点斜式,求得定点的坐标;(2)将方程变形,把x, y看作参数的系数,因为此式子对于任意的参数的值都成立,故需系数为零,解方程组可得x, y的值,即为直线过的定点1根据两直线的一般式方程判定两直线平行的方法(1)判定斜率是否存在,若存在,化成斜截式后,则k1k2且b1b2;若都不存在,则还要判定不重合(2)可直接采用如下方法:一般地,设直线l1:A1xB1yC10,l2:A2xB2yC20.l1l2A1B2A2B10,且B1C2B2C10,或A1C2A2C10.这种判定方法避开了斜率存在和不存在两种情况的讨论,可以减小因考虑不周而造成失误的可能性2根据两直线的一般式方程判定两直线垂直的方法(1)若一个斜率为零,另一个不存在,则垂直;若两个都存在斜率,化成斜截式后,则k1k21.(2)一般地,设l1:A1xB1yC10,l2:A2xB2yC20,l1l2A1A2B1B20.第二种方法可避免讨论,减小失误1直线1,化成一般式方程为()Ayx4By(x3)C4x3y120D4x3y12C直线1化成一般式方程为4x3y120.2已知ab0,bc0,则直线axbyc通过()A第一、二、三象限B第一、二、四象限C第一、三、四象限D第二、三、四象限C由axbyc,得yx,ab0,bc0,直线在y轴上的截距0.由此可知直线通过第一、三、四象限3如果axbyc0表示的直线是y轴,则系数a,b,c满足条件()Abc0Ba0Cbc0且a0Da0且bc0Dy轴方程表示为x0,所以a,b,c满足条件为bc0,a0.4已知直线l的倾斜角为60,在y轴上的截
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 服装制版师模拟考试题(附参考答案)
- 土方运输分包协议
- 设计师职业生涯中常见的问题与解决方法试题及答案
- 浙江国企招聘2025湖州南浔新诚油品销售有限公司招聘2人笔试参考题库附带答案详解
- 2025重庆市设计院有限公司招聘29人笔试参考题库附带答案详解
- 2025福建移动春季校园招聘若干人笔试参考题库附带答案详解
- 2025湖北武汉市汉江水利水电(集团)有限责任公司招聘13人笔试参考题库附带答案详解
- 志愿者活动内容:点亮文明社区共筑和谐家园
- 设计表达技巧的2024年国际商业美术设计师考试试题及答案
- 解析2024年纺织工程师证书考试试题及答案
- 2025年安徽蚌埠市东方投资集团有限公司招聘笔试参考题库附带答案详解
- 液压与气压传动(第5版)课件:气动控制阀及基本回路
- 2025年福建省电子信息集团有限责任公司招聘笔试参考题库附带答案详解
- 2025年国家保安员试考试题库(附答案)
- 2025年消费电子行业分析报告
- 2025年成人急性髓系白血病(AML)患者手册
- 新会古井烧鹅填料秘方与鹅皮脆化机理研究
- 个体工商户雇工劳动合同书
- 2025-2030中国工程监理行业市场深度调研及面临的困境对策与发展战略研究报告
- 慢性鼻窦炎诊断和治疗指南(2024)解读 2
- 啤酒厂招聘合同协议
评论
0/150
提交评论