




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形全等与相似专题1、三角形全等的条件(一):三边对应相等的两三角形全等(SSS)已知ABCABC,找出其中相等的边与角【例】如图,ABC是一个钢架,AB=AC,AD是连结点A与BC中点D的支架求证:ABDACD 随堂练习: 如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB要 用“边边边”证明ABCFDE,除了已知中的AC=FE, BC=DE以外,还应该有什么条件?怎样才能得到这个条件?2、三角形全等的条件(二):有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)例题与练习1填空:(1)如图3,已知ADBC,ADCB,要用边角边公理证明ABCCDA,需要三个条件,这三个条件中,已具有两个条件,一是ADCB(已知),二是_;还需要一个条件_(这个条件可以证得吗?)(2)如图4,已知ABAC,ADAE,12,要用边角边公理证明ABDACE,需要满足的三个条件中,已具有两个条件:_(这个条件可以证得吗?)例1 已知: ADBC,AD CB(图3)求证:ADCCBA问题:如果把图3中的ADC沿着CA方向平移到ADF的位置(如图5),那么要证明ADF CEB,除了ADBC、ADCB的条件外,还需要一个什么条件(AF CE或AE CF)?怎样证明呢?例2 已知:ABAC、ADAE、12(图4)求证:ABDACE3、三角形全等的条件(三):(1)两角及其夹边对应相等的两三角形全等(ASA);(2)两角和其中一角的对边对应相等的两三角形全等(AAS)例如下图,D在AB上,E在AC上,AB=AC,B=C求证:AD=AE 分析AD和AE分别在ADC和AEB中,所以要证AD=AE,只需证明ADCAEB即可 证明:在ADC和AEB中 所以ADCAEB(ASA) 所以AD=AE4、直角三角形全等的条件(四):斜边与一直角边对应相等的两个直角三角形全等巩固练习:1 如图,ABC中,AB=AC,AD是高,则ADB与ADC (填“全等”或“不全等” )根据 (用简写法)2 如图,CEAB,DFAB,垂足分别为E、F,(1)若AC/DB,且AC=DB,则ACEBDF,根据 (2)若AC/DB,且AE=BF,则ACEBDF,根据 (3)若AE=BF,且CE=DF,则ACEBDF,根据 (4)若AC=BD,AE=BF,CE=DF。则ACEBDF,根据 (5) 若AC=BD,CE=DF(或AE=BF),则ACEBDF,根据 3、判断两个直角三角形全等的方法不正确的有( )(A) 两条直角边对应相等 (B)斜边和一锐角对应相等(C)斜边和一条直角边对应相等 (D)两个锐角对应相等4、如图,B、E、F、C在同一直线上,AFBC于F,DEBC于E,AB=DC,BE=CF,你认为AB平行于CD吗?说说你的理由答: 理由: AFBC,DEBC (已知) AFB=DEC= (垂直的定义)在Rt 和Rt 中 ( ) = ( ) (内错角相等,两直线平行) 5、如图,广场上有两根旗杆,已知太阳光线AB与DE是平行的,经过测量这两根旗杆在太阳光照射下的影子是一样长的,那么这两根旗杆高度相等吗?说说你的理由。提高练习:1、判断题:(1)一个锐角和这个锐角的对边对应相等的两个直角三角形全等。( )(2)一个锐角和锐角相邻的一直角边对应相等的两个直角三角形全等( )(3)一个锐角与一斜边对应相等的两个直角三角形全等( )(4)两直角边对应相等的两个直角三角形全等( )(5)两边对应相等的两个直角三角形全等( )(6)两锐角对应相等的两个直角三角形全等( )(7)一个锐角与一边对应相等的两个直角三角形全等( )(8)一直角边和斜边上的高对应相等的两个直角三角形全等( )2、如图,D=C=90,请你再添加一个条件,使ABDBAC,并在添加的条件后的( )内写出判定全等的依据。(1) ( )(2) ( )(3) ( )(4) ( ) 相似三角形1、三角形相似的条件(一):如果两个三角形的三组对应边的比相等,那么这两个三角形相似三角形相似的条件(二):如果两个三角形的两组对应边的比相等,且夹角相等,那么这两个三角形相似三角形相似的条件(三):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似例题欣赏例1:根据下列条件,判断ABC和是否相似,并说明理由?A=、AB=7、AC=14=、=7、=14 AB=4、 BC=6、AC=8 =12、=18、=21课堂练习 1、根据下列条件,判断ABC和是否相似,并说明理由?A=、AB=8、AC=15=、=16、=30 AB=10、 BC=8、AC=16 =20、 =16、=322、图中的两个三角形是否相似/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程电气答辩题库及答案
- 农村供水设备采购与安装方案
- 老旧厂区改造建设工程项目环境影响报告书
- 玉米出口贸易代理服务合同范本
- 离婚协议中知识产权分割及补偿协议范本
- 道路危险货物运输合同签订安全评估与应急处理
- 水厂水质升级改造工程技术方案
- 离婚协议书起草及财产分割方案协商合同
- 离婚抚养权分配协议:男方获得孩子抚养权及监护权
- 夫妻协议离婚及出轨方赔偿金支付及财产分割协议
- 加快健康中国建设课件
- 2024年新疆鄯善县人民医院公开招聘护理工作人员试题带答案详解
- 买卖矿山居间合同协议
- 厌氧氨氧化工艺优化-洞察及研究
- 河北省单招7类数学试卷
- 下列不属于交通运输企业安全生产费用支出
- 患者安全管理培训课件
- 地质勘查成果管理办法
- (零诊)成都市2023级(2026届)高中毕业班摸底测试英语试卷(含答案)
- 消防作战指挥课件
- 医疗健康新媒体运营方案
评论
0/150
提交评论