




已阅读5页,还剩22页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
因子分析 1 一 前言 变量的相关性公共因子 将多个实测变量转换成少数几个不相关的综合指数 2 二 因子分析模型 一般地 设X x1 x2 xp 为可观测的随机变量 且有f f1 f2 fm 为公共 共性 因子 commonfactor 简称因子 factor 3 e e1 e2 ep 为特殊因子 specificfactor f和e均为不可直接观测的随机变量 1 2 p 为总体x的均值A aij p m为因子负荷 载荷 factorloading 矩阵 4 通常先对x作标准化处理 使其均值为零 方差为 这样就有假定 fi的均数为 方差为 ei的均数为 方差为 i fi与ei相互独立 则称x为具有m个公共因子的因子模型 5 如果再满足 fi与fj相互独立 i j 则称该因子模型为正交因子模型 正交因子模型具有如下特性 x的方差可表示为设 6 hi2是m个公共因子对第i个变量的贡献 称为第i个共同度 communality 或共性方差 公因子方差 commonvariance i称为特殊方差 specificvariance 是不能由公共因子解释的部分 7 因子载荷 负荷 aij是随机变量xi与公共因子fj的相关系数 设称gj2为公共因子fj对x的 贡献 是衡量公共因子fj重要性的一个指标 8 三 因子分析的步骤 输入原始数据xn p 计算样本均值和方差 进行标准化计算 处理 求样本相关系数矩阵R rij p p 求相关系数矩阵的特征根 i 1 2 p 0 和相应的标准正交的特征向量li 9 确定公共因子数 计算公共因子的共性方差hi2 对载荷矩阵进行旋转 以求能更好地解释公共因子 对公共因子作出专业性的解释 10 四 因子分析提取因子的方法 主成分法 principalcomponentfactor 11 每一个公共因子的载荷系数之平方和等于对应的特征根 即该公共因子的方差 12 极大似然法 maximumlikelihoodfactor 假定原变量服从正态分布 公共因子和特殊因子也服从正态分布 构造因子负荷和特殊方差的似然函数 求其极大 得到唯一解 13 主因子法 principalfactor 设原变量的相关矩阵为R rij 其逆矩阵为R 1 rij 各变量特征方差的初始值取为逆相关矩阵对角线元素的倒数 i 1 rii 则共同度的初始值为 hi 2 1 i 1 1 rii 14 以 hi 2代替相关矩阵中的对角线上的元素 得到约化相关矩阵 h1 2r12 r1pr21 h2 2 r2pR rp1rp2 hp 2R 的前m个特征根及其对应的单位化特征向量就是主因子解 15 迭代主因子法 iteratedprincipalfactor 主因子的解很不稳定 因此 常以估计的共同度为初始值 构造新的约化矩阵 再计算其特征根及其特征向量 并由此再估计因子负荷及其各变量的共同度和特殊方差 再由此新估计的共同度为初始值继续迭代 直到解稳定为止 16 Heywood现象残差矩阵 17 五 因子旋转 目的 使因子负荷两极分化 要么接近于0 要么接近于1 常用的旋转方法 18 1 方差最大正交旋转 varimaxorthogonalrotation 基本思想 使公共因子的相对负荷 lij hi2 的方差之和最大 且保持原公共因子的正交性和公共方差总和不变 可使每个因子上的具有最大载荷的变量数最小 因此可以简化对因子的解释 19 2 斜交旋转 obliquerotation 因子斜交旋转后 各因子负荷发生了较大变化 出现了两极分化 各因子间不再相互独立 而彼此相关 各因子对各变量的贡献的总和也发生了改变 适用于大数据集的因子分析 20 六 因子得分 Thomson法 即回归法回归法得分是由Bayes思想导出的 得到的因子得分是有偏的 但计算结果误差较小 21 Bartlett法Bartlett因子得分是极大似然估计 也是加权最小二乘回归 得到的因子得分是无偏的 但计算结果误差较大 因子得分可用于模型诊断 也可用作进一步分析的原始资料 22 七 因子分析应用实例 23 八 因子分析应用的注意事项 应用条件 1 变量是计量的 能用线性相关系数 Pearson积叉相关系数 表示 2 总体的同质性 24 样本量没有估计公式 至少要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025建筑工程施工简约合同模板
- 2025年健身教练职业技能考核试卷:健身教练健身行业健身行业健身行业健身行业政策法规试题
- 2025年护士执业资格考试题库-妇产科护理学专项综合测试题
- 2025年消防执业资格考试题库(消防设施检测与维护)消防设施维护保养试题
- 广东省深圳市普通高中2017-2018学年上学期高二语文12月月考试题09
- 2025【合同范本】财产分割协议书格式模板
- 安徽省A10联盟2025-2026学年高二上学期9月学情调研试题历史
- 2025《合同样本全书》
- 建筑工程转包合同示范文本
- 企业数字化转型咨询服务协议
- 两相流数值模拟(第9讲)-VOF方法及其应用04课件
- 华北理工采矿学课件14采矿方法分类
- 人教鄂教版六年级科学上册知识点总结
- 公司工程数量管理办法
- 宇宙中的地球 1.3地球的历史(第1课时)课件
- 支部委员会委员选票一
- 锅炉安装改造维修施工工艺标准
- 如何书写个案护理报告
- 一线医务人员登记表(模板)
- 战略销售蓝表中文版
- 2021年四年级数学上册二两三位数除以两位数整理与练习课件苏教版
评论
0/150
提交评论