


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
整式的乘法教学目标探索并了解多项式与多项式相乘的法则,并运用它们进行运算让学生主动参与到一些探索过程中去,逐步形成独立思考,主动探索的习惯,培养思维的批判性、严密性和初步解决问题的愿望和能力教学重点与难点重点:多项式与多项式相乘难点:多项式与多项式相乘教学设计复习引新1前面这节课我们研究了单项式与单项式、单项式与多项式相乘的方法,请同学回忆方法2练一练:教科书第175页练习1、2我们再来看一看第一节课悬而未决的问题:为了扩大绿地面积,要把街心花园的一块长a米,宽m米的长方形绿地增长b米,加宽n米(课件展示街心花园实景,而后抽象成数学图形,并用不同的色彩表示出原有部分及其新增部分)提出问题:你能用几种方法表示扩大后绿地的面积?不同的表示方法之间有什么关系?用不同的方法怎样表示扩大后的绿地面积?用不同的方法得到的代数式为什么是相等的呢?这个问题激起学生的求知欲望,引起学生对多项式乘法学习的兴趣学生独立思考后交换各自的解法:方法一:这块花园现在长(a+b)米,宽(m+n)米,因而面积为(a+b)(m+n)米2方法二:这块花园现在是由四小块组成,它们的面积分别为:am米2、an米2、bm米2、bn米2,故这块绿地的面积为(am+an+bm+bn)米2(a+b)(m+n)和(am+an+bm+bn)表示同一块绿地的面积,所以有(a+b)(m+n)=am+an+bm+bn注:借助几何图形的直观,使学生从图形中可以看到(a+b)(m+n)是一个长方形的面积,而这个长方形又可以分割成四小块,它们的面积和是am+an+bm+bn,因此,(a+b)(m+n)=am+an+bm+bn让学生对这个结论有直观感受探究新知引导学生观察等式的左边(a+b)(m+n)是两个多项式(a+b)与(m+n)相乘,我们从刚才问题的解决过程中发现了多项式与多项式相乘的方法进一步引导学生,如果我们把(m+n)看成一个整体,那么两个多项式(a+b)与(m+n)相乘的问题就转化为单项式与多项式相乘,这是一个我们已经解决的问题,请同学们试着做一做注:把(m+n)看成一个单项式,因学生过去接触不多,可能不易理解实际上,这是一个很重要的思想和方法学习一种新的知识、方法,通常的做法是把它归结为已知的数学知识、方法,从而使学习能够进行在此,如果学生真正理解了把(m+n)看成一个单项式,那么,两次运用单项式与多项式相乘的法则,就得出多项式相乘的法则了1做一做(a+b)(m+n)=a(m+n)+b(m+n)=am+an+bm+bn2讲一讲让学生试着总结多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加3试一试例1 教科书第176页例6教学中要强调多项式与多项式相乘的基本法则,提醒学生注意多项式的每一项都应该带上他前面的正负号多项式是单项式的和,每一项都包括前面的符号,在计算时一定要注意确定积中各项的符号例2先化简,再求值:(a-3b)2+(3a+b)2-(a+5b)2+(a-5b)2,其中a=-8,b=-64练一练教科书第177页练习1深入探索1试一试例3计算:(x+2)(x-3)注:让学生通过“试一试”、“想一想”,结合直观图形,自己尝试发现规律,激发学生对问题中所蕴藏的一些数学规律进行探索的兴趣2想一想问:结果中的x2,-6是怎样得到的?学生口答继续完成教科书第177页练习2问:从刚才解决问题的过程中你们有什么发现吗?(1)学生交流各自的发现(2)结合教科书第177页练习第3题图,直观认识规律,并完成此题4用一用例4一块长m米,宽n米的玻璃,长宽各裁掉a米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?小结课外巩固1必做题:教科书第178页第6、7、8、9、10、11题2备选题:(1)计算:(x+2y-1)2(2)已知x2-2x=2,将下式化简,再求值(x-1)2+(x+3)(x-3)+(x-3)(x-1)(3)小明找来一张挂历画包数学课本已知课本长a厘米,宽b厘米,厚c厘米,小明想将课本封面与封底的每一边都包进去m厘米问小明应该在挂历画上裁下多大面积的长方形?设计思想本章在第一节课提出“怎样用不同的方法表示扩大后的绿地面积,用不同的方法得到的代数式为什么是相等的呢?”的问题,当时提出这个问题的目的是为了激起学生的求知欲望,引起学生对多项式乘法学习的兴趣,在学习了整式的加减与单项式与单项式、多项式与单项式的乘法后,与之呼应,又提出了当时悬而未决的问题“用不同的方法得到的代数式为什么是相等的呢?”教学中充分利用直观的,几何图形,采用给出几何图形的方式来验证运算法则及公式的正确性,让学生从图形中可以看到(a+b)(m+n)是一个长方形的面积,而这个长方形又可以分割成四小块,它们的面积和是am+an+bm+bnam+an,因此,(a+b)(m+n)=am+an+bm+bn,先对多项式乘以多项式的方法有直观感受,这充分体现了代数与几何之间的内在联系和统一然后在性质推导中把(m+n)看成一个单项式,渗透很重要的思想和方法:整体思想在教学过程中,学生发现多项式与多项式相乘的法则,第一步是“转化”为多项式与单项式相乘
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育行业2025年投资并购整合策略与教育投资并购投资决策支持系统评估报告
- 工业互联网量子通信技术2025年在智能土地资源管理产业产业通信领域的应用预研报告
- 数字艺术作品版权保护与版权交易市场前景研究报告:2025年行业趋势与挑战
- 互联网医疗背景下2025年医药电商平台运营模式与合规监管趋势报告
- 供应链金融赋能中小企业融资2025年商业模式创新与实践报告
- 航空运输业2025复苏策略:疫情冲击后的航空安全培训市场报告
- 2025年中国瓶装水市场运行态势及行业发展前景预测报告
- 2018-2024年中国绿茶市场深度评估及投资方向研究报告
- 中国暖脚垫行业市场发展前景及发展趋势与投资战略研究报告(2024-2030)
- 幼儿园小班母亲节活动方案
- 陕西省专业技术人员继续教育2025公需课《党的二十届三中全会精神解读与高质量发展》20学时题库及答案
- 2024华师一附中自招考试数学试题
- CJT 288-2017 预制双层不锈钢烟道及烟囱
- GB/T 11693-1994船用法兰焊接单面座板
- 提高手术室垃圾分类正确率PDCA
- GB 16806-1997消防联动控制设备通用技术条件
- 320T履带吊安装方案 9
- 五年级上册数学课件-《练习一》北师大版 (共10张PPT)
- 清洁间歇导尿重点技术评分重点标准
- 机动车登记服务站管理规定
- APQP培训教材PPT课件
评论
0/150
提交评论