勾股定理课件1.ppt_第1页
勾股定理课件1.ppt_第2页
勾股定理课件1.ppt_第3页
勾股定理课件1.ppt_第4页
勾股定理课件1.ppt_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

勾股定理 数形结合之美 八年级下第十七章 学习目标 1 了解勾股定理的发现过程 掌握勾股定理的内容 会用面积法证明勾股定理 2 会用勾股定理进行简单的计算 3 培养在实际生活中发现问题总结规律的意识和能力 相传2500年前 毕达哥拉斯有一次在朋友家里做客时 发现朋友家用砖铺成的地面中反映了某种图形的关系 数学家毕达哥拉斯的小故事 毕达哥拉斯 情景引入 合作探究 活动 探究勾股定理的探索发现 验证及简单应用 我们也来观察图中的地面 看看有什么发现 你发现了什么 说一说 SA SB SC 图中每个小方格是1个单位面积 1 A中含有 个小方格 即A的面积是个单位面积 B的面积是个单位面积 C的面积是个单位面积 9 9 18 9 实验 探究一 结论 图1中三个正方形A B C的面积之间的数量关系是 SA SB SC 三个正方形A B C的面积有什么关系 探究二 SA SB SC在图2中还成立吗 结论 仍然成立 A的面积是个单位面积 B的面积是个单位面积 C的面积是个单位面积 25 16 9 你是怎样得到正方形C的面积的 与同伴交流交流 图中每个小方格是1个单位面积 SA SB SC A B C 问题2 式子SA SB SC能用直角三角形的三边a b c来表示吗 问题4 那么直角三角形三边a b c之间的关系式是 至此 我们在网格中验证了 直角三角形两条直角边上的正方形面积之和等于斜边上的正方形面积 即SA SB SC a2 b2 c2 a2 b2 c2 问题1 去掉网格结论会改变吗 问题3 去掉正方形结论会改变吗 命题1 如果直角三角形的两直角边长分别为a b 斜边长为c 那么a2 b2 c2 我们通过实验猜想 从特殊到一般的探索方法 我国汉代的数学家赵爽指出 四个全等的直角三角形如下拼成一个中空的正方形 赵爽弦图 赵爽 请同学们拿出已准备的四个全等直角三角形动手拼一拼 是不是所有的直角三角形都具有这样的结论呢 光靠实验和猜想还不能把问题彻底搞清楚 赵爽弦图 表现了我国古人对数学的钻研精神和聪明才智 它是我国古代数学的骄傲 这个图案被选为2002年在北京召开的国际数学大会的会徽 a b c S大正方形 c2 S小正方形 b a 2 S大正方形 4 S三角形 S小正方形 赵爽弦图 证明 b a 请先用手中的全等直角三角形按图示进行摆放 然后根据图示的边长 选择其中一个图形 分析其面积关系后证明 证明定理 图1 图2 毕达哥拉斯的证法 图2 解 毕达哥拉斯 Pythagoras 是古希腊数学家 他是公元前五世纪的人 比商高晚出生五百多年 希腊另一位数学家欧几里德 Euclid 是公元前三百年左右的人 在编著 几何原本 时 认为这个定理是毕达哥达斯最早发现的 所以他就把这个定理称为 毕达哥拉斯定理 以后就流传开了 总统证法 a a b b c c 美国第二十任总统加菲尔德的证法在数学史上被传为佳话 人们为了纪念他对勾股定理直观 简捷 易懂 明了的证明 就把这一证法称为 总统 证法 在中国古代 人们把弯曲成直角的手臂的上半部分称为 勾 下半部分称为 股 我国古代学者把直角三角形较短的直角边称为 勾 较长的直角边称为 股 斜边称为 弦 1 成立条件 在直角三角形中 3 作用 已知直角三角形任意两边长 求第三边长 2 公式变形 注意 哪条边是斜边 即 勾2 股2 弦2 下列说法正确的是 A 若a b c是 ABC的三边 则B 若a b c是Rt ABC的三边 则C 若a b c是Rt ABC的三边 则D 若a b c是Rt ABC的三边 则 1 图中已知数据表示面积 求表示边的未知数x y的值 定理应用 求面积 25 625 例1求下列直角三角形中未知边的长 6 x 10 4 5 X 12 5 x 温馨提示 已知直角三角形的两边长 求第三边长时 应选用勾股定理变形公式直接代入计算较为快捷准确 x 8 x 3 x 13 例2已知 Rt BC中 AB AC 则BC 5或 温馨提示 当直角三角形中所给的两条边没有指明是斜边或直角边时 其中一较长边可能是直角边 也可能是斜边 这种情况下 一定要进行分类讨论 否则容易丢解 1 在Rt ABC中 1 如果a 3 b 4 则c 2 如果a 5 c 13 则b 4 如果c 25 b 20 则a 当堂检测 收获无处不在 我知道了 我感受了 我探索了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论