




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
秘密 启用前 试卷类型: A2019届广州市高三期末调研测试文科数学 201812本试卷共5页,23小题,满分150分。考试用时120分钟。注意事项:1答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。用2B铅笔在答题卡的相应位置填涂考生号。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保持答题卡的整洁。考试结束后,将试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的1设集合,则A B C D答案:D考点:集合的运算,一元二次不等式。解析:,所以,2若复数满足,则A B C D答案:C考点:复数的运算,复数模的概念。解析:,所以,3下列函数中,既是奇函数,又在上单调递增的是 A B C D答案:B考点:函数的奇偶性和单调性。解析:A、D不是奇函数,排除。对于C,0,所以,在上单调递减的,排除。对于D,是奇函数,在上,是增函数,是增函数,所以,是增函数。4某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2015年1月至2017年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图 根据该折线图,下列结论错误的是A年接待游客量逐年增加B各年的月接待游客量高峰期在8月C2015年1月至12月月接待游客量的中位数为30万人D各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳答案:C考点:统计图。解析:年接待游客量总体趋势向上,逐年增加,所以A正确;由图可知,各年的8月接待游客量最高,所以,月接待游客量高峰期都在8月,B正确;从图象上看,各前前6月比较稳定,波动小,D正确;对于C,2015年1月至12月月接待游客量的中位数为,6月、7月的平均数:33大约是33万,且6、7月游客量的中点不在30万上,所以,C错误,选C。5.九章算术中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”. 现有一阳马,其正视图和侧视图是如图所示的直角三角形若该阳马的顶点都在同一个球面上,则该球的体积为A B C D答案:A考点:三视图,球的体积。解析:如图,该几何体为四棱锥PABCD,底面ABCD为矩形,其中PA底面ABCD,AB2,AD1,PA1,该阳马外接球的直径为PC,所以,该阳马外接球的体积为:V6已知的边上有一点满足,则可表示为 A B C D 答案:D考点:平面向量的三角形法则。解析:7已知双曲线的中心为坐标原点,离心率为,点在上,则的方程为A B C D答案:B考点:双曲线的标准方程与性质。解析:离心率,又,所以,设双曲线方程为:,点代入,得:解得:7,所以,双曲线方程为:,焦点在y轴上时不符合,所以,选B。8由的图象向左平移个单位,再把所得图象上所有点的横坐标伸长到原来的2倍后, 所得图象对应的函数解析式为 A B C D答案:A考点:三角函数图象的平移与伸缩变换。解析:的图象向左平移个单位,得到:,再将图象上所有点的横坐标伸长到原来的2倍后得到:,所以,选A。9是直线和平行的 A充分非必要条件 B必要非充分条件C充要条件 D既不充分又不必要条件答案:C考点:充分必要条件,直线方程。解析:时,两条直线为:和,斜率相等,是平行的,充分性成立。当=1时,两直线不平行,当1时,两直线平行,得:,化为:,解得:=3或2,当2时,两条直线为:和重合,不是平行的,所以舍去即=3,必要性成立,选C。10. 若实数,满足不等式组 则的取值范围是A B C D 答案:A考点:线性规划。解析:原不等式组化为:(1)或(2)(1)没有公共部分,不符合,不等式组(2)的平面区域如下图:过点A(0,5)时取得最小值5过点B(2,1)时取得最大值3,所以,取值范围为:11已知的内角, , 的对边分别是, , ,且,若,则的取值范围为A B C D答案:B考点:正弦定理,余弦定理,基本不等式。解析:因为,由正弦定理,得:,所以,由余弦定理,得:cosC,所以,C,所以,c2,又三角形的两边之和大于第三边,所以,24,选B。12已知椭圆: 的长轴是短轴的2倍,过右焦点F且斜率为的直线与相交于A,B两点若,则A. B. C. D. 答案:D考点:椭圆的性质,平面向量的坐标运算,要求有较强的计算能力。解析:依题意,得:,又,所以,所以,椭圆的方程变为:,即:,过右焦点F(c,0)且斜率为的直线为:,由,消去y,得:,即:,设A(,),B(,),则+,又,得:,即有:,解得:,所以,即,化简,得2,所以,二、填空题:本题共4小题,每小题5分,共20分13已知,则 答案:考点:指数运算,对数运算。解析:得:,换为对数,得:14设为第二象限角,若,则 = 答案:考点:两角和的正切公式,同角三角函数之间的关系。解析:,解得:,即,又1,且为第二象限角,解得:15圆锥底面半径为,高为,点是底面圆周上一点,则一动点从点出发,绕圆锥侧面一圈之后回到点,则绕行的最短距离是 答案:考点:圆锥的侧面展开图,三角函数。解析:圆锥底面半径为r,高为h,如下图,母线长SP3,由:,得:,绕行的最短距离是为P23sin6016已知过点作曲线的切线有且仅有两条,则实数的取值范围是 答案:考点:函数的导数及其应用。解析:设切点坐标为,因为,所以,切线斜率为:,切线方程为:又因为切线过点,所以,化简,得:(1)因为过点作曲线C的切线有且仅有两条,所以方程(1)有两个解,实数的取值范围是三、解答题:共70分解答应写出文字说明、证明过程或演算步骤第1721题为必考题,每个试题考生都必须做答第22、23题为选考题,考生根据要求做答(一)必考题:共60分17(本小题满分12分)设为数列的前项和,已知,(1)证明:数列为等比数列;(2)求数列的通项公式,并判断,是否成等差数列?18(本小题满分12分) 某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:(1)根据频率分布直方图计算该种蔬果日需求量的平均数(同一组中的数据用该组区间中点值代表);(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为公斤,利润为元.求关于的函数关系式,并结合频率分布直方图估计利润不小于1750元的概率.19(本小题满分12分) 如图,四边形是平行四边形,平面 平面,,,为的中点.(1)求证:平面;(2)求证:平面;(3)求点到平面的距离.20.(本小题满分12分) 已知动圆过定点,且与定直线相切(1)求动圆圆心的轨迹的方程;(2)过点的任一条直线与轨迹交于不同的两点,试探究在轴上是否存在定点(异于点),使得?若存在,求点的坐标;若不存在,说明理由21.(本小题满分12分) 已知函数e.(1)若e,求的单调区间;(2)当时,记的最小值为,求证:(二)选考题:共10分请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题计分22.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程为,直线,直线 以极点为原点,极轴为轴的正半轴建立平面直角坐标系(1)求直线,的直角坐标方程以及曲线的参数方程;(2)已知直线与曲线交于两点,直线与曲线交于两点,求的面积23.(本小题满分10分)选修45:不等式选讲 已知函数(1)当时,解不等式;(2)设不等式的解集为,若,求实数的取值范围2019届广州市高三年级调研测试文科数学试题参考答案及评分标准评分说明:1本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则2对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分3解答右端所注分数,表示考生正确做到这一步应得的累加分数4只给整数分数选择题不给中间分一、选择题:本题共12小题,每小题5分,共60分题号123456789101112答案DCBCAD BACABD二、填空题:本题共4小题,每小题5分,共20分13 14 15 16三、解答题:共70分解答应写出文字说明、证明过程或演算步骤17 解:(1)证明:,, 1分, 2分, 3分, 5分 是首项为,公比为的等比数列 6分(2)解:由(1)知, 7分, 8分, 9分, 10分. 11分 即,成等差数列 12分18解:(1) 2分 . 3分故该种蔬果日需求量的平均数为265公斤. 4分(2)当日需求量不低于250公斤时,利润元, 5分当日需求量低于250公斤时,利润元 , 6分所以 8分由得,, 9分所以 10分. 11分 故估计利润不小于1750元的概率为0.7 . 12分19 解:(1)证明:取的中点,连接,在中,因为是的中点,所以且,1分因为,所以且,2分 所以四边形是平行四边形,所以, 3分又平面,平面,所以平面 4分(2)证明:在中,由余弦定理得, 5分因为,所以. 6分因为平面平面,平面,平面平面,所以平面. 7分(3)解法1:由(1)平面,所以点到平面的距离等于点到平面的距离, 8分 设点到平面的距离为, 过作,交的延长线于, 则平面,所以是三棱锥的高 9分 由余弦定理可得, 所以,. 10分 . 因为,11分 即,解得. 所以点到平面的距离为 12分解法2:因为,且,所以点到平面的距离等于点到平面的距离的, 8分 由(2)平面.因为平面,所以平面平面过点作于点,又因为平面平面,故平面.所以为点到平面的距离9分在中,由余弦定理可得所以, 10分因此, 11分 所以点到平面的距离为 12分20(1)解法1:依题意动圆圆心到定点的距离,与到定直线的距离相等,1分 由抛物线的定义,可得动圆圆心的轨迹是以为焦点,为准线的抛物线, 2分 其中动圆圆心的轨迹的方程为 3分 解法2:设动圆圆心,依题意:. 2分 化简得:,即为动圆圆心的轨迹的方程 3分(2)解:假设存在点满足题设条件由可知,直线与的斜率互为相反数,即 4分直线的斜率必存在且不为,设, 5分由得 6分由,得或 7分设,则 8分由式得,即消去,得, 9分, 10分, 11分存在点使得 12分21(1)解:当时, ,的定义域是 1分, 2分当时,;当时, 3分所以函数的单调递减区间为,单调递增区间为 4分(2)证明:由(1)得的定义域是,令,则,在上单调递增,5分因为,所以,故存在,使得 6分当时,单调递减;当时,单调递增;故时,取得最小值,即, 8分由得, 9分令,则,当时,单调递增, 10分当时,单调递减,11分故,即时,取
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年现代制造业管理考试试卷及答案
- 2025年市场研究与分析师职业考试试题及答案
- 2025年水资源管理专业考试试卷及答案
- 2025年教师招聘考试试题及答案
- 2025年工程造价与管理知识考试卷及答案
- 物资清查盘点管理制度
- 物资采购支付管理制度
- 特技培训日常管理制度
- 特殊人员窗口管理制度
- 特殊区域垃圾管理制度
- 【MOOC】通信电路与系统-杭州电子科技大学 中国大学慕课MOOC答案
- 【MOOC】金融衍生品-四川大学 中国大学慕课MOOC答案
- 《地球物理勘探》课件
- 【MOOC】电工电子技术实验(电路部分)-东北大学 中国大学慕课MOOC答案
- 导管血流相关预防和护理
- 软件正版化培训
- 先兆流产课件-课件
- 医院培训课件:《静脉导管维护专家共识》
- DB43T 1173-2016 钢-超高韧性混凝土轻型组合结构桥面技术规范
- 三维网客土喷播植草护坡方案
- 白酒经销商与酒店合作协议书模板
评论
0/150
提交评论