关于数学课堂探究活动的思考教学论文.doc_第1页
关于数学课堂探究活动的思考教学论文.doc_第2页
关于数学课堂探究活动的思考教学论文.doc_第3页
关于数学课堂探究活动的思考教学论文.doc_第4页
关于数学课堂探究活动的思考教学论文.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

关于数学课堂探究活动的思考教学论文 关于数学课堂探究活动的思考 由“平行四边形的性质”教学谈起 “中学数学核心概念、思想方法及其教学设计的理论与实践”课题组初中第四次会议期间对两节平行四边形的性质观摩课进行了研讨引发我对“课堂探究活动”的几点思考. 新课程标准中明确提出“有效的数学学习活动不能单纯地依赖模仿与记忆动手实践、自主探索与合作交流是学生学习数学的重要方式”在人教版初中教材中安排了大量的探究活动也充分体现了对探究活动的重视在观摩课上授课教师都不同程度的在教学过程中设置了若干探究活动充分体现了新课程的要求但是在一些探究环节的处理上我觉得还有待商榷. 一、选择探究问题要注重学生现有的知识基础 探究问题的选择直接影响探究活动的质量和效果在选择探究问题的时候要充分考虑学生现有的生活经验、知识基础和思维发展如果探究问题过于简单缺乏思维的挑战性就不能激发学生的探究热情;反之探究问题过于复杂不在学生的“最近发展区”应者寥寥无几也会使探究活动流于形式. 教学片段1: 师:平行四边形除了两组对边分别平行外还有没有其它性质呢 (媒体播放分步出示) 猜一猜:边之间角之间 画一画:在格点纸上画一个平行四边形. 量一量:度量一下与你的猜想一致 生:顺利完成猜想并按教师的要求完成画一画、量一量的操作大部分学生比较认真个别学生不够积极 课后反思:在探究平行四边形性质的过程中两节课都安排了类似的探究环节:观察平行四边形猜想平行四边形的边、角关系在图形中通过度量来验证进一步启发学生去做逻辑验证这种探究问题的方法固然是数学探究中的重要方法之一但是从学生的知识基础来分析这个探究活动就稍显简单了学生在小学已经学习了平行四边形的基础知识经历了针对图形的探究过程知晓了平行四边形的边、角关系的结论那么在此基础上的再次“观察、猜想、实验验证”就失去了其真正的意义也很难激发学生的学习热情. 学生的认知基础是设置探究问题的关键“中学数学核心概念、思想方法及其教学设计的理论与实践”课题组在教学设计框架结构中设置了“教学问题诊断分析”的环节其中提到“可以从认知分析入手即分析学生已经具备的认知基础(包括知识、思想方法和思维发展基础)对照教学目标还需要具备些条件通过已有基础和目标之间的差异比较分析教学中可能出现的障碍”但是像我这样的青年教师所能做到的只是“分析学生学过些知识”而对于“思想方法和思维发展”更多的还是站在教师角度的主观臆断即使是知识方面曾经学过的知识在现阶段状况学生间差异有多大这些问题直接关系到每一节课的效率所以要使“教学问题诊断分析”更符合学生的实际情况可以将其变为一个操作环节采取类似“学情调查试卷”的形式使其更具准确性和可信性,进而将“教学问题诊断分析”的工作做实 教学建议:就学生的思维发展状况来看他们对平行四边形的知识应属于“知道而不清楚偏重图形的直观认识缺乏逻辑分析的支撑”所以这一课主要需解决的问题是“梳理与提升”而不是“探究与发现”是“换一种角度来看同一个问题”而不是“探究一个新问题”那么这一课的引入可否以学生的、总结为主充分调动学生发言互相补充教师适当总结、规范学生的语言从而得出平行四边形的定义、表示法和性质. 教学片段2: 学生已通过实验探究得出平行四边形的性质:平行四边形的两组对边分别相等;平行四边形的两组对角分别相等 师:所有的平行四边形是否都具有上述的结论你能利用学过的知识证明这个结论 生:思考问题 师:证明线段相等、角相等通常是利用全等的方法而图形中没有三角形只有四边形可见需添加辅助线构造三角形将四边形转化为三角形来解决 生:在教师的引导下解决问题 课后反思:将四边形问题转化为三角形来解决的转化思想是本课的难点我们的教学设计意在通过逻辑分析的方法引导学生来突破难点但是通过我个人的课堂实践后我感觉学生现阶段的思维发展状况与常用思维方法还是稍有差异学生在此之前的学习中还是以图形的直观认识为主逻辑推理刚刚起步还没有成为多数学生分析问题的首选方法所以在探究性的问题中逻辑推理很难成为多数学生的自然联想虽然学生在教师的引导之下可以理解和接受但是这个过程的设计难以实现“面向每一个学生” 教学建议:教材中在这一环节设计了用三角板拼四边形的内容有的老师也提出了在课堂的引入部分就设置一个“用全等的三角形纸片拼出平行四边形”的环节这样既符合学生的思维习惯从直观上为辅助线添加打下伏笔又可以使学生认识到三角形和四边形是可以互相转化的从而强化了学生对图形间关系的认识 二、设置探究问题要给予学生思维空间 教学片段3: 师:平行四边形除了两组对边分别平行外还有没有其它性质呢 探究:(媒体播放分步出示) 剪一剪:将所画的平行四边形沿其中一条对角线剪开现在你有新的办法进一步验证猜想 生:将平行四边形沿对角线剪开进一步回答可通过连结对角线的方法来证明 课后反思:设置“剪一剪”这个环节的目的是启发学生将平行四边形拆分为两个三角形来处理但是在学生需要逻辑证明平行四边形性质的时候才安排这样的一个步骤显得过于直白了在这个探究环节中学生只需要简单的模仿没有更多的思维活动所以这个探究环节的设置对促进学生思维发展提高学生对“转化思想”的认识缺乏显著效果 教学建议:在“教学片段2”的建议中提到在课堂的引入部分用两个全等的三角形拼出平行四边形能够给学生更大的思维空间:从三角形能拼出四边形到将四边形拆成两个三角形可以使学生更充分的体会三角形与四边形的相互转化并将图形的直观认识上升到逻辑分析所以看上去相近的两种图形操作给学生的思维空间是不同的学生的收获也是不同的 三、探究活动中的师、生角色 两节观摩课的教学过程都比较流畅教师顺利地实施了教学设计但总体感觉课堂稍显平淡在几个探究环节中教师的提问较少每个问题最多提问到三名学生有的问题只提问了一名学生学生间讨论不够积极没有学生提出质疑我觉得在课堂的探究活动中还应给学生更多的表现机会抓住“学生到底是想的”在提问环节对答对的同学适当的追问征询答案的范围更广泛一些 新课程标准提出“学生是数学学习的主人教师是数学学习的组织者、引导者与合作者”在课堂上每一位学生的思维都是活跃的对教师提出的每一个问题都会有所思考而这些思考是发散式的有的正确有的错误有的清晰有的模糊不论怎样都是学生对某一问题的第一反应印象很深刻而这种思维假设如果不经过相应的操作和验证就很难得出一个清晰地结论教师要突出学生的“主体地位”扮演好“学习的组织者、引导者”与合作者”的角色就要在沿着既定的课堂教学设计逐步深入的同时更多的关注到学生的这些想法调动每一位学生发言说出自己的想法供大家讨论让他们互相修正即使是一个很简单的问题站起来回答和坐在下面听的效果是不一样的没有回答问题的同学在下面听一遍和听十遍的效果也是不样的如果恰好有的同学有疑问当堂被解决和问题被搁置的差别就更大了在概念课的教学中我也不赞同“一个概念三点注意”的教学模式但我同时认为“反例教学”是深刻认识概念所不可或缺的学生的认识不可能是百分之百正确的不想方设法把错误的想法找出来并且“破”除他正确的东西就很难“立”起来 课堂教学是发散性的是多变的如果按照固

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论