



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二次函数与一次函数综合1.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作ABy轴,垂足为B,连结OA(1)求OAB的面积;(2)若抛物线经过点A。 求c的值; 将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在OAB的内部(不包括OAB的边界),求m的取值范围2. 在平面直角坐标系xOy中,二次函数的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C。(1)求点A的坐标;(2)当时,求m的值;(3)已知一次函数,点P(n,0)是x轴上的一个动点,在(2)的条件下,过点P垂直于x轴的直线交这个一次函数的图象于点M,交二次函数的图象于N。若只有当时,点M位于点N的上方,求这个一次函数的解析式。3. 已知关于x的二次函数y=ax2+bx+c(a0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,点A的坐标是(1,0)(1)求c的值;(2)求a的取值范围;(3)该二次函数的图象与直线y=1交于C、D两点,设A、B、C、D四点构成的四边形的对角线相交于点P,记PCD的面积为S1,PAB的面积为S2,当0a1时,求证:S1- S2为常数,并求出该常数。4. 如图9,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OBOC ,tanACO(1)求这个二次函数的表达式(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由(3)如图10,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,APG的面积最大?求出此时P点的坐标和APG的最大面积.5.如图,在平面直角坐标系中,点A、C的坐标分别为(1,0)、(0,),点B在x轴上已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点FyxBAFPx1CO(1)求该二次函数的解析式;(2)若设点P的横坐标为m,试用含m的代数式表示线段PF的长;(3)求PBC面积的最大值,并求此时点P的坐标6.在平面直角坐标系中,已知抛物线经过A(4,0),B(0,4),C(2,0)三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S求S关于m的函数关系式,并求出S的最大值xyOBCMA(3)若点P是抛物线上的动点,点Q是直线yx上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标7.如图,抛物线y=ax2+2ax+c(a0)与y轴交于点C(0,4),与x轴交于点A(4,0)和B(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QEAC,交BC于点E,连接CQ当CEQ的面积最大时,求点Q的坐标;(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0)问是否有直线l,使ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由8.如图,已知抛物线yx 2bxc与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,1)(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DEx轴于点D,连结DC,当DCE的面积
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钢铁行业新一代节能降耗技术分析
- 相反数的题目及答案
- 现场答辩题目及参考答案
- 2025有关电子产品销售合同
- 2025版房屋租赁合同范本
- 物业保洁考试试题及答案
- 2024译林版八年级英语上册Unit 2 课时6 Integration ABC 分层作业(含答案)
- 2025年7月血液学检验考试题(附参考答案)
- 2025年高考化学试题分类汇编:化学实验基础(含解析)
- 2025高考生物试题分类汇编:细胞的物质基础和结构基础(含解析)
- Q3D学习体会课件
- 眼科学教学课件:绪论
- 中医运动养生 中医养生学课件
- GB/T 5563-2013橡胶和塑料软管及软管组合件静液压试验方法
- GB/T 1192-1999农业轮胎
- 人类学-课件精
- DBJ51-T 188-2022 预拌流态固化土工程应用技术标准
- 体育产业经营管理课件第一章导论
- 2023门球竞赛规则电子版图文并茂
- 部编版四年级语文上册第5课《一个豆荚里的五粒豆》优秀PPT课件
- 大班社会《班级规则我遵守》课件
评论
0/150
提交评论