


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学史学习心得哥 德 巴 赫 猜 想数学院09数本2班 沈丹纯 200924092206这次我要讲的是了解哥德巴赫猜想。彼得堡科学院院士哥德巴赫在研究把任何数表示成几个质数的和的问题。哥德巴赫发现,总可以把任何一个数分解成不超过三个质数和。但他不能证明这个命题,甚至找不到证明它的方法,于是,他写信全告诉欧拉这件事。在1742年6月7日的信中,哥德巴赫告诉欧拉,他想冒险发表下面的假定;“大于5的任何数(正整数),是三个质数的和”。欧拉回信说:他认为“每一个偶数都是两个质数的和”这论断是一个完全正确的定理。显然,哥德巴赫的断语就是欧拉这论断的简单推论(因为:奇数=3+偶数) 。然而,欧拉也不能证明它。这就是著名的哥德巴赫猜想。关于哥德巴赫问题,不论是提出问题的哥德巴赫本人还是大数学家欧位都不能做出什么结果。上世纪一个超群数学家康托耐心地试验了从2到1000的所有偶数,说明在这范围内,哥德巴赫断言是成立的,但这能说明什么呢?此后,多少著名的学者都为哥德巴赫问题花费了无数的精力,力图开辟解决这一问题的道路,或者将它与数学的其他问题联系起来。但要严格证明它,却毫无结果,1912年,数论大师兰道在国际数学家会议上说:这个问题要用近代数学工具来解决是绝对不可能的。 到二十年代初期,问题才有了一点进展,挪威数学家布朗用古老的筛法证明了:每一个偶数是九个互数因子之和加九个素数因子之积,简记为(9+9),延自这一派的方法,1924年拉德马哈尔证明了(7+7),1932年爱斯斯尔曼证明了(6+6);1938年,布赫斯塔勃先后证明了(5+5)和(4+4);1956年维诺格拉多夫证明的(3+3);1958年我国数学家王元证明了(2+3)。 另一证明方法是1948年由匈牙利数学家兰恩易开辟的,他证明了每一个大偶数都是一个素数和一个“素因子示超过六个的”数之和,简记为(1+6),1962年,山东大学教授潘承洞证明了(1+5),同年,他又和王元证明了(1+4);三年后1965年,布赫斯塔勃、维诺格拉多夫和庞皮艾黎都证明了(1+3)。 陈景润继承了前人的结果,吸取了前人的智慧,施展了他坚韧不拔的毅力,顽强地向哥德巴赫问题挺进。为了能最快阅读最新的国久的有关资料,了解外国的新结果,他在掌握英、俄两门外语基础上,又自学了德、法、日、意和西班牙语。同时在数论方面接连攻下了三十多道难题中的六、七题,为解决哥德巴赫问题做出了必不可少的锻炼和准备。 例如他在圆内整点问题,球内整点问题,华林问题,三维除数问题上,都改进了中外数学家的结果。经过这一艰苦的历程,1966年,陈景润在科学通报第一十七期上发表了他已经证明(1+2)的成果。已故的著名数学家闵嗣鹤教授审核了二百多页论文手稿,确认其证明无误,但建议他加以简化,此后陈景泣不分白天黑夜,一笔又一笔推演了六麻袋稿子,经过七易寒暑,终于写出了著名的论文:“大偶数表为一个素数及一个不超过一个素数的乘积之和”,精心论证了(1+2),其中定理 ,被英国数学家哈勃斯丹和西德数学家李希特誉为“陈氏定理”,是“筛法”的“光辉的顶点”,并立即补入即将刊印出版的他们合著的筛法一书中,英国数学家赞扬陈景润说“你移动了群山”。 陈景润为祖国增添了荣誉,他的突破为推动学林繁荣做出了极大的贡献。1978年他出席了第一届全国科学大会。先后当选为第四届、第五届人大代表为会议主席团成员。 1979年初,他和著名的拓扑学家吴文俊夫妇应美国普林斯顿高级研究所所长伍尔夫教授的邀请,前往讲学和作短期的研究工作。在那里,陈景润又利用有利条件,完成子论文算术级数中的最小素数,把最小素数从原来的80推进到16,这是当前世界上最新的成果,受到了国际数学界的好评。我没有读
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家具厂财务支出审批规章
- 2025贵州江口县银龄计划教师招募考试备考题库及答案解析
- 无产权房合同(标准版)
- 铺位租赁合同(标准版)
- 部编本七年级语文上册备考指导计划
- 2025年急救护理操作流程模拟测试卷答案及解析
- 2025年胃肠内科内镜检查操作规范测试卷答案及解析
- 缺铁性贫血儿童验血筛查措施
- 2025年妇产科产前诊断技术试题答案及解析
- 2025年护理学在急诊科中的作用及体会总结答案及解析
- T-CITSA 57-2025 高速公路基础设施主数据标准
- 质量风险预警系统-洞察及研究
- 住院病人防止走失课件
- 2025年临床助理医师考试试题及答案
- 2025年南康面试题目及答案
- 2025年全国学宪法讲宪法知识竞赛考试题库(含答案)
- 定增基金管理办法
- 汽车标定工程师培训课件
- 速叠杯教学课件
- GB/T 45767-2025氮化硅陶瓷基片
- 2025年第十届“学宪法、讲宪法”活动知识竞赛题库及答案
评论
0/150
提交评论