免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
正切函数性质与图像说课材料 开场:题目的变化教材变要求教法变:细心的老师会发现新课程中的正切函数这一节与旧教材有了变化,从题目上看,新教材把“图象与性质”改成了“性质与图象”;从内容上看,教材也有了很大的变化,这既体现了新课程理念在教材中的渗透,又要求我在教学过程中应采取不同的教法。设计背景:学生认知规律已形成:通过学生高中阶段以来对函数的研究,包括前两节关于正余弦函数的学习,学生已经形成了研究函数的主要方法,即由函数的图像得到性质。教法为何变:在今后的研究函数的过程中,许多函数的图象是无法直接描绘出来的,此时就需要通过函数的解析式分析函数某些性质如:定义域,值域,奇偶性等等。这样画函数的图像也就有了大体方向,也能描绘出大致的函数图象。另外,也是基于正切函数图象的复杂性,相对正余弦函数图象的连续性来讲,正切函数是不连续的。所以教法需要变。教法如何变:这节课,我采用的方法是先让学生从已学正切函数的相关知识的基础上研究该函数的主要性质,然后在此基础上描绘出函数的大致图像,再由图像完善函数的性质。教材中的地位和作用:重要且有长远意义:本节课是继正余弦函数之后的又一三角函数, 它与正余弦函数一样,是重要的三角函数中之一。学习正切函数有利于学生进一步掌握研究函数的基本方法,有利于学生掌握解决函数问题时,采用由性质到图象的不同的学习方法,并运用到今后的函数学习中去。体现了新课程“注重培养学生分析问题和解决问题的能力,发展学生的创新意识和应用意识,提高学生数学探究能力,进一步发展学生的数学实践能力”的要求。教学目标:(1)掌握由正切函数性质描绘图象的方法。(2)正确理解正切函数的性质,实现图象与性质的统一。重点难点重点:正切函数的性质与图象 难点:如何用性质得到图象教学过程三个重要方面一、 正切函数性质的研究为什么:1、(学生)由于学生在本节课之前已经学习了正余弦函数的五个方面的性质,故正切函数的性质可以由学生已经掌握的三角函数知识来解决,当我们从已有性质出发去研究它的图象时,可以让学生有效地避免以前走的弯路。2、(教师)是本节课设计背景和教学目标的必然要求。怎么做: 1、学生以讨论的形式研究:(利用正切的定义)定义域;(利用诱导公式)周期性,奇偶性;(利用正切线)单调性与值域。(教师引导,计算机辅助,)2、研究这些性质在图象上的体现。由正切的定义知:正切函数定义域为: 在x=处函数不连续。由诱导公式:tan(x+p)=tanx,xr,且xkp+,kz,知正切函数是周期函数,且周期为p;(提醒周期函数的定义:f(x+t)=f(x) )(学生可能提出2p,3p为周期的情况,强调是周期,但非最小正周期)每隔p个单位的函数图象是一样的。由诱导公式:tan (-x)=tanx, ,xr,且xkp+,kz,由定义域的分析,定义域是关于原点对称的,可知正切函数是奇函数;图像关于原点对称。(计算机辅助)由正切线的变化规律知:正切函数在区间上,y值随x的增大而增大,是增函数,且角度无限接近,正切线向上无限延伸。图像是呈上升趋势。且没有尽头。二、 正切函数图象的形成第一步,在黑板上描绘出在区间上的正切函数的图象,让学生利用上述性质将它描绘完整。为什么:1、(学生)学生的认知程度有限,无法通过性质直接画出完整的正切函数图象,需要加以引导。 2、(学生)激发了对学习的兴趣,培养了学生分析问题解决问题的能力,提高学生数学探究能力,进一步发展了学生的数学实践能力。 3、(教师)之所以选择该区间,是因为学生由该区间拓展到整个定义域的过程中将会体验到上述的所有性质。怎么做:请学生在黑板上呈现。第二步:向学生呈现由正切线画出正切函数图象的过程。为什么:1、(学生)通过验证得到图象的准确性之后,明确了由性质到图象的可行性,既有利于增强学生的自信心,也有利于该方法在今后的学习中的继续运用。 2、(教师)在黑板上呈现出正切函数完整图象之后,学生也许会对它的准确性产生怀疑,毕竟这仅仅是“大致”的图象。这样就可以消除学生的疑惑,使教学顺利地展开。怎么做:利用计算机辅助,几何画板呈现。第三步:根据图象完善性质为什么:1、(学生)在已经熟悉和理解图象到性质的方法基础上,很有必要利用学生熟知的方法来巩固并理解性质。 2、(教师)是实现图象与性质统一的关键。怎么做:1、类比反比例函数得出“对称中心”和“渐进线”的概念,为下个内容的教学做准备。 2、强调“对称中心”和“渐进线”在画图中的重要作用。三、实现图象与性质的统一例:已知函数,(1)求它的定义域、值域、周期、单调区间、对称中心及渐进线。(2)请根据上述性质描绘出它的大致图象。为什么:1、(学生)虽然已经理解了正切函数的性质与图象,但由于一方面有的学生已经预习过,脑中已经有了该函数的大致图象,草图不能说是完全由性质得到的;另一方面今后遇到的很多函数,都不会有奇偶性等性质。所以要真正实现性质与图象的统一,单单掌握正切函数这一个是不够的。2、(教师)对于由正切函数变形得到的函数,如果学生能够根据问(1)求出的性质描绘出它的大致图象的话,那说明学生真的掌握了这一种方法,也可以通过本例题来找出学生的误区以及不足。怎么做:1、问(1)由我讲解。 2、问(2)学生独立完成, 3、将部分同学所作的不准确图象用投影仪呈现,其他同学进行交流并指正。 反思1、周期与最小正周期:学生可能提出2p,3p为正切函数周期的情况,这里需要强调是这些是周期,但非最小正周期2、定义域与单调区间的差别:提出判断“正切函数是定义域上的增函数”,可类比反比例函数来理解。3、画图的规范:及时纠正学生在画图过程中的出现的作图不规范的问题。4、状况的处理:在上课过程中会出现许多课前未预料到的状况,我在这个时候要沉着冷静地处理,从学生的实
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年二级建造师市政真题及答案解析版
- 2025年麻疹的试题及答案
- 2025年药用微生物考试题及答案
- 好人好事演讲稿题目
- 社团竞选主席演讲稿
- 技术部演讲稿
- 智能表通讯协议书
- 村长选举演讲稿
- 硕腾疫苗协议书
- 拆迁协议书是否免税
- 多智能体系统在航空航天领域的应用
- GB/T 30306-2024家用和类似用途饮用水处理滤芯
- DL∕T 5113.1-2019 水电水利基本建设工程单元工程质 量等级评定标准 第1部分 土建工 程(代替DLT 5113.1-2005)
- YBT 5055-2014 起重机用钢轨
- 在互联网 背景下从化永辉驾校的营销策略研究
- 我国老年痴呆防治存在的问题及对策
- 第1章 有理数(压轴必刷30题9种题型专项训练)(原卷版)
- JG-T 191-2006 城市社区体育设施技术要求
- 保险市场调研报告
- 财务管理中的成本与效益
- 国网公司2021年电网资产统一身份编码物联网标签制作安装指导手册增量分册
评论
0/150
提交评论