江苏省洪泽县共和中学八年级数学上册《3.2 中心对称与中心对称图形》教案 苏科版.doc_第1页
江苏省洪泽县共和中学八年级数学上册《3.2 中心对称与中心对称图形》教案 苏科版.doc_第2页
江苏省洪泽县共和中学八年级数学上册《3.2 中心对称与中心对称图形》教案 苏科版.doc_第3页
江苏省洪泽县共和中学八年级数学上册《3.2 中心对称与中心对称图形》教案 苏科版.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省洪泽县共和中学八年级数学上册3.2 中心对称与中心对称图形教案 苏科版 经历观察.操作.分析等数学活动过程,通过具体实例认识中心对称,知道中心对称的性质. 【教学重点】 中心对称的涵义 中心对称的性质. 成中心对称的图形的画法【教学难点】 中心对称的性质.成中心对称的图形的画法【设计思路】 通过具体的中心对称实例,让学生经历观察.操作.分析等数学活动,从而让学生认识中心对称,知道中心对称的性质,最后通过画图操作,进一步加深对性质的理解,同时掌握利用中心对称的基本性质作图的技能.【教学过程】一、情境引入利用课本提供的两个实物图,引导学生观察、探索:他们的形状、大小是否相同?如果将其中一个图形绕着某一点旋转180,能与另一个重合吗?【设计说明:通过现实情境激发学生的好奇心和主动学习的欲望。】二、新课讲授 引出概念: 如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点说一说:观察你生活的周围各处,指出几个中心对称的现象,并加以数学描述。【设计说明:通过对生活中的中心对称现象的描述,加深了对中心对称的理解,锻练了用数学语言进行表达的能力】 探索活动 活动一 用一张透明纸覆盖在图3-5上,描出四边形abcd。用大头针钉在点o处,将四边形abcd绕点o旋转180度 问题一:四边形abcd与四边形关于点o成中心对称吗?问题二:在图3-5中,分别连接关于点o的对称点a和、b和、c和、 d和。你发现了什么?成中心对称的2个图形,对称点的连线都经过对称中心,并且被对称中心平分 【设计说明:让学生在操作与观察的基础上,发现中心对称的两个图形具有(一般地)旋转的一切性质,且具有特殊的性质对称点连线经过对称中心,且被对称中心平分】活动二 中心对称与轴对称进行类比轴对称中心对称有一条对称轴直线有一个对称中心点图形沿对称轴对折(翻转180度)后重合图形绕对称中心旋转180度后重合对称点的连线被对称轴垂直平分对称点连线经过对称中心,且被对称中心平分。【设计说明:中心对称与轴对称都是指两个图形按某种规则运动能互相重合的特殊位置关系,教学中,将他们进行类比,进一步加深对中心对称的理解】练一练 课本98页练习1【设计说明:学习概念后,把概念直接运用到题目中,这是一个从一般到特殊的过程,也是数学学习的一大特点。本题是中心对称性质的直接运用。】活动三 利用中心对称基本性质作图 操作1 作点关于点的对称点 【设计说明:学生通过自己阅读,获取作图方法,陪养了学生自学能力】 操作2 作线段关于点成中心对称的图形 操作3 作三角形关于点成中心对称的图形【设计说明:这2个操作活动,是在第1个操作活动基础上的逐步加深。培养学生对问题的分析能力,和对知识的迁移能力。】活动四 课本98页练习2【设计说明:在学生看过与简单做过的基础上,加深对作图技能的掌握】试试看 把课本98页练习2稍改一下:其他条件不变,把点d放到abc内部【设计说明:拓展与提高,使学有余力的学生得到更高的发展】三、课堂小结 经历观察、操作等数学活动,通过具体实例认识中心对称,探索中心对称的性质; 经历利用中心对称基本性质作图的过程,掌握作图的技能。【设计说明:小结新知,加深记忆。最好让学生自己总结所学内容。】四、作业布置 习题3.2 第3题【设计说明:加强练习,巩固新知】3.2中心对称与中心对称图形(2)【教学目标】 比照轴对称与轴对称图形的关系,认识中心对称图形,知道中心对称图形的性质【教学重点】 中心对称图形的定义及其性质【教学难点】 中心对称图形与轴对称图形的区别;利用中心对称图形的有关概念和基本性质解决问题。【设计思路】通过具体的中心对称图形实例,让学生经历观察、比较、分析等数学活动,从而让学生认识中心对称图形,知道中心对称图形与轴对称图形之间的区别,最后通过对中心对称图形的说理,进一步加深对中心对称图形的理解。【课前准备】 手工制作一个“风车”【教学过程】一、情境引入1、 欣赏图片: 问题:这些图形有什么共同的特征? 演示“风车”(课前制作)旋转过程,复习旋转【设计说明:漂亮的图片、转动的风车,一静一动激发学生的兴趣与好奇心,促动学生主动学习的欲望。】2、 共同回顾轴对称图形,某图形沿某条轴对折能重合,那么有没有什么图形绕着某点旋转也能重合呢?今天我们就来研究这个问题。【设计说明:让学生初步感受新旧之间应该有所联系,从而巧妙的引入课题。】3、 能将“风车”(或上面给的四幅图形)绕其上的一点旋转180o,使旋转前后的图形完全重合吗?【设计说明:引导学生观察、探索,得出中心对称图形的概念,引入新课。】二、新课讲授 引出概念: 中心对称图形:平面内,如果把一个图形绕着某一点旋转180度后能与自身重合,那么这个图形叫做中心对称图形。这个点就是它的对称中心。练一练 下面哪个图形是中心对称图形? 【设计说明:即时巩固是必要的。】 2 究中心对称图形的的性质:在轴对称中,如等腰梯形abcd中,op为对称轴,则点a与点d是一对对应点,那么a、d两点连线与对称轴的关系为:被对称轴垂直且平分aobcdef提出问题: 左图是一幅中心对称图形,请你找出点a绕点o旋转180o 后的对应点b,点c的对应点d呢?你是怎么找的? 现在你能很快地找到点e的对应点f吗? 从上面的操作过程,你能发现中心对称图形上的一对对应点与对称中心的关系吗?即:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。 对比轴对称图形与中心对称图形轴对称图形中心对称图形有一条对称轴直线有一个对称中心点沿对称轴对折绕对称中心旋转180o对折后与原图形重合旋转后与原图形重合【设计说明:列出表格,通过对比,加深印象。】 试试看 课本99页图3-10中,哪些图形是中心对称图形?哪些是轴对称图形?请画出他们的对称中心或对称轴。 认一认:下列常见图形哪些是轴对称图形?哪些是中心对称图形? 线段a 等边三角形b 平行四边形c 长方形d 圆形e 直角三角形f【设计说明:加深对中心对称图形的理解,进一步明确中心对称图形与轴对称图形之间的区别。】 出生活中的中心对称图形 对学生举出的生活中的中心对称图形,要引导学生充分观察,鼓励学生用自己的语言描述出这些图形的共同特征。 【设计说明:让学生感受生活中的图形美,培养学生的观察能力和语言表达能力。】 例题教学 课本99页例题【设计说明:本例题注重引导学生根据中心对称图形的定义,用说理的方法确认一个图形是中心对称图形,并指出它的对称中心。】练练 课本101页习题3.2 25. 你用若干根长度相等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论