变压器突发短路故障分析.doc_第1页
变压器突发短路故障分析.doc_第2页
变压器突发短路故障分析.doc_第3页
变压器突发短路故障分析.doc_第4页
变压器突发短路故障分析.doc_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

变压器突发短路故障的缺陷分析 摘要通过实例介绍了一套系统的、可操作的现场分析判断突发短路故障的方法,对电力系统运行有较大实用价值。 关键词变压器突发短路故障 0引言 近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上。变压器经受突发短路事故后状况判断、能否投运,成为运行单位经常要决策的问题。以前变压器发生突发短路事故以后,需要组织各方面专家分析事故成因,然后确定试验方法,根据试验结果继续分析或者追加试验。这种分析、抢修机制已不适应当前电网停电时间限制、高可靠性以及事故严重性等情况。北京供电局修试处总结300余台110kV及以上电压等级变压器多年运行维护经验形成了一套固定的短路突发事故试验分析方法,即油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验“四项分析”。实践证明,“四项分析”基本能够满足变压器突发事故的分析要求。 1分析项目 1.1变压器油中溶解气体色谱分析 用于判断变压器内是否发生过热或者放电性故障。该项目对变压器突发事故的故障判断十分敏感,但需要仪器精度高,仅适于在试验室进行,故比较费时。实践中,多数情况下对缺陷的初步定性要依靠它,综合分析也要结合色谱分析结果进行,而且该方法能判断出很多别的试验无法发现的缺陷,例如中兴庄变电站35kV原#1变压器突发事故后,无载分接开关处放电,但直阻试验反映不出来,只有色谱分析才能发现。1.2绝缘电阻试验变压器各绕组、铁心、夹铁、外壳相互之间的绝缘电阻是否正常,是常用的简易检查项目。如老君堂变电站220kV原#1变压器事故掉闸后首先进行绝缘电阻试验,很快发现三侧绕组和铁心对地的绝缘电阻几乎为0,马上就判断为纵绝缘击穿且铁心烧损,与吊罩检查结果相符;又如下面述及的110kV林河变电站#2变压器,也是借助绝缘电阻试验确定了缺陷位置。1.3绕组直阻试验直阻试验检查导电回路中分接开关接触是否良好、引线接头焊接或接触是否良好、绕组是否断股、匝间有无短路等缺陷,可配合多种试验共同确定缺陷,被1997年的部颁预试规程确定为变压器最重要的电气试验项目。由于电网短路容量越来越大,短路事故在直阻方面的反映往往很明显。如北土城变电站110kV原#2变压器事故后,通过绕组变形试验发现低压绕组异常,但绝缘电阻正常,色谱分析结果表明发生了涉及绝缘部位的放电,最后依靠低压三相直阻不平衡的试验结果分析出:低压绕组明显变形且绕组严重受损,须进行大修。大修时发现几乎所有的绕组都已经扭曲变形,内部结构严重损坏。1.4绕组变形试验它是通过各线圈在高频下的响应特性来判断其结构和周围状况是否发生明显变化的新型试验项目。如220kV怀柔变电站#1变压器1997年3月发生套管爆炸事故,由于不知线圈内部状况,不能决定是否更换线圈,后根据绕组变形试验结果正常的结论确定不再更换线圈。在大短路容量的电网中近年变压器发生出口短路事故比率较高(例如华北电网1998年的4起变压器事故中3起源于短路冲击),而绕组变形是其中常见的严重缺陷,所以该项目是现场决定变压器是否投运的主要依据,有其它试验项目不可替代的作用。220kV老君堂变电站原#2变压器短路事故后所有电气和色谱试验均正常,但绕组变形试验表明绕组已经变形并在大修时被确认。该项试验在北京供电局已经开展4年,共进行229台次,其中事故后试验46台次,发现缺陷10起,没有一起判断错误的情况。近3年来,共进行了40余次事故抢修,依照上述“四项分析”分析无一误判。可见,这套分析方法比较适于现场,但必须强调:“四项分析”要综合起来使用,方能得出正确的结论。 2应用实例 例1:1998-10-1,110kV林河变电站一台10kV开关速断保护动作掉闸,重合失败,7s后#2变压器(SFZ40000/110,1996-11投运)本体轻、重瓦斯,闸箱重瓦斯,差动保护均动作,变压器高、低压侧开关掉闸,退出运行。油色谱分析表明:总烃含量急剧增加,CO、CO2增加较少,结论为变压器内部存在突发性的裸金属部位的放电。电气试验分析表明:绕组直流电阻试验正常;绕组变形试验发现低压绕组略有疑点;绝缘电阻试验发现低压绕组对高压绕组、铁心及地的绝缘仅有25M。进行分解试验以查找缺陷位置:高压绕组对低压绕组、铁心以及地绝缘电阻正常;铁心对高、低压绕组及地绝缘电阻正常。判断结果是:低压绕组非线圈部位对地部位的绝缘有问题。综合分析:变压器内部发生突发性的裸金属部位放电,但绕组变形、直流电阻试验又未发现明显缺陷,故线圈本身有缺陷的可能性很小;低压绕组有微弱的变形,对地绝缘只有25M,故低压绕组接近变压器箱体的部位(尤其是出线处即低压绕组对地部位)因短路冲击而放电的可能性最大;低压绕组出线处的手孔可以打开,故可方便地在现场检查。变压器内部检查发现:低压内部引线铜排的多个木夹板中,有两处没有包扎铜排的辅助绝缘,其中低压引线上部木夹件处铜排有相间短路放电痕迹,木夹件表面烧黑,引发相邻部位铜排相间发生油间隙电弧放电。变压器内部散落放电后的铜渣少许,油中炭素较多,线圈上部垫块多处松动。证明试验对于故障部位的判断基本正确,该变压器现场处理后投入运行。例2:1996-10-28,吕村#2变压器(SFPSZ9120000/220,1992年投运)110kV侧B相套管爆炸,套管芯子向上窜起30cm,套管整体上移10cm,根部严重喷油,故障录波器、差动保护、轻重瓦斯、防爆筒均动作。试验分析:拔掉高压、中压侧所有套管后,做电气试验结果正常。鉴于套管爆炸从未发生过,上级单位决定该变压器返厂大修。但变压器运输要经过一座高速公路桥,工期不允许。最后,根据试验人员的建议,先进行绕组变形试验,结果正常,之后进行局部放电试验,结果正常。投运后运行正常。 小型中间继电器可靠性与选用问题的研究吴义彬游廷光刘正国徐金虎摘要:针对如何合理选用小型中间继电器,切实提高电力自动化装置现场运行可靠性问题,按电力自动化装置实际运行情况要求对部分小型中间继电器进行系列对比摸底试验,并根据试验情况与结果,提出实际选用时必须考虑的原则以及几个典型问题的解决办法。 关键词:小型中间继电器; 可靠性; 负载能力 0引言 小型中间继电器对电力系统自动化装置的现场运行可靠性至关重要。如何恰当选择、合理使用小型中间继电器,如何强化“小型中间继电器”设计、制造、筛选工作,切实提高小型中间继电器固有可靠性,是摆在电力系统自动化装置制造、运行单位及小型中间继电器制造厂商面前的紧迫课题。为此,按照电力系统自动化装置制造单位意见,力求尽可能模拟自动化装置实际运行情况要求,对部分小型中间继电器进行了一系列对比摸底试验研究。 1系列产品对比摸底试验 1.1被试继电器的分组及编号 第一组16号国产金属罩密封类继电器(型号 JHX-1M/A-2Z 024,可代表JRX-31M,JZX-29M,JMX-13M)第二组16号进口塑料封装类继电器第三组16号进口塑料封装类继电器第四组16号进口塑料封装类继电器第五组16号进口塑料封装类继电器1.2试验情况与基本结果全部被试样品进行了外观检查、线圈电阻、功能试验、触点接触电阻、时间试验(是按额定激励值激励;是按80%额定激励值激励)、介质耐压、绝缘电阻、线圈温升、高温、低温、高低温循环、稳态湿热、负载能力(AC 220 V时3 A,5 A,8 A)共13项对比试验,基本结果介绍如下。1.2.1高温对比试验温度702 ,线圈加DC 24 V激励,保持2 h后箱内测试吸合、释放值时:第五组6号产品动作值为20.5 V,大于最大值19.2 V,不合格。其余样品均合格通过。1.2.2稳态湿热对比试验温度402 ,相对湿度(953)%,保持96 h,箱外测试介质耐压与绝缘电阻试验中:第五组2号产品样品绝缘电阻25 M,介质耐压击穿,不合格。其他样品均合格通过。1.2.3负载能力对比试验温度402 ,相对湿度(953)%,触点切换负载电压AC 220 V,电流由低到高依次做3 A,5 A,8 A各1 000次切换试验,切换频率为30次/min,试验中:第四组产品只通过3 A,1 000次试验,做5 A负载时4号、5号产品触点开路失效,且4号产品外观变形,3号产品耐压试验击穿。8 A负载试验未进行。第五组3A,1 000次试验通过,5 A,1 000次试验中,1号、2号触点粘死失效且外观变形,4号、5号、6号耐压击穿失效。其它样品均合格通过。1.2.4结论第一、二组被试继电器全部顺利通过13项对比摸底试验,且在时间试验中,按80%额定值激励时的动作、复归时间均在原产品标准所规定的正常值范围之内合格通过;在负载能力试验中,全部通过恶劣环境条件(402 ,(953)%相对湿度环境)下AC 220 V的3 A,5 A,8 A各1 000次接通、断开爬高试验。第一组(国产)和第二组(进口)被试继电器性能优良,可推荐为优先选用产品。2继电器承受DC 220 V阻性负载能力试验 鉴于电力系统自动化装置多数选用小型中间继电器触点直接切换DC 220 V负载。因此,试验认证各种小型中间继电器实际切换DC 220 V负载的能力,对提高小型中间继电器现场实用可靠性尤为重要。为此,对各类继电器产品统一按下列规范进行一系列对比摸底试验。2.1试验技术要求环境条件:正常试验室环境条件;负载性质:阻性;触点开路电压:DC 220 V;触点负载电流:即从0.4 A,104次开始做起,如顺利通过,再依次按0.5 A,104次;0.6 A,104次;0.7 A,104次;,逐一进行爬高试验,直至失效终止。2.2基本结果 JAG-5舌簧继电器承受DC 220 V负载的能力最强。JHX-1M(含JRX-31M,JZX-29M,JMX-13M),JHX-2F,JHX-3F与改进后的JZX-39F均可承受DC 220 V,0.5 A以上的负载,对产品标准所规定的DC 220 V,50 W负载而言,具有超过2倍规定负载的过负载能力。3合理选用小型中间继电器面对纷繁复杂的现代继电器产品,如何合理选择、正确使用,是直接影响整机性能与实用可靠性的至关重要的课题,当然也是整机设计、研制人员密切关注并且必须优先解决的实际问题。鉴于电力系统自动化装置在运行过程中的特殊性,以及万一发生事故后果特别严重,要做到合理选择,正确使用,就必须充分研究分析整机“相应”的实际使用条件与实际技术参数要求,按照“价值工程原则”,恰如其分地提出入选继电器产品必须达到的技术性能要求。具体说来,大致可按下列要素逐条分析研究,确认所要求的等级以及量值范围。3.1气候应力作用要素主要指温度、湿度、大气压力(海拔高度)、沿海大气(盐雾腐蚀)、砂尘污染、化学气氛和电磁干扰等要素。考虑电力系统自动化装置对全国各地自然环境的普遍适用性,兼顾必须长年累月可靠运行的特殊性,装置关键部位必须选用具有高绝缘、强抗电性能的全密封型(金属罩密封或塑封型,金属罩密封产品优于塑封产品)小型中间继电器产品。因为只有全密封继电器才具有优良的长期耐受恶劣环境性能、良好的电接触稳定、可靠性和稳定的切换负载能力(不受外部气候环境影响)。3.2机械应力作用要素主要指振动、冲击、碰撞等应力作用要素。对电力系统自动化装置主要考虑的是抗地震应力作用。为提高抵抗机械应力作用能力,宜选用采用平衡衔铁机构的小型中间继电器,如JHX-1M, JHX-3M,JHX-2F等产品。3.3激励线圈输入参量要素主要是指过激励、欠激励、低压激励与高压(220 V)输出隔离、温度变化影响、远距离有线激励、电磁干扰激励等参量要素,这些都是确保电力系统自动化装置可靠运行必须认真考虑的因素。按小型中间继电器所规定的激励量激励是确保它可靠、稳定工作的必要条件。3.4触点输出(换接电路)参量要素主要是指触点负载性质,如灯负载,容性负载,电机负载,电感器、螺线、接触器(继电器)线圈、扼流圈负载,阻性负载等;触点负载量值(开路电压量值、闭路电流量值),如低电平负载、干电路负载、小电流负载、大电流负载等。任何自动化设备都必须切实认定实际所需要的负载性质、负载量值的大小,选用合适的继电器产品尤为重要。继电器的失效或可靠不可靠,主要指触点能否完成所规定的切换电路功能。如切换的实际负载与所选用继电器规定的切换负载不一致,可靠性将无从谈起。4使用小型中间继电器应注意的特殊问题4.1使用出口中间继电器时的关键问题静态继电保护装置运行中失效的某型号继电器5只,介质耐压试验全部AC 100 V。经无水乙醇清洗外部玻璃绝缘子,吹干,即有4只达到标准要求,另一只绝缘子烧损击穿,耐压仍L/(R1R2)显然,串联R1后使减小,继电器的吸合时间加速。特别是当R1R2,电压很高时,吸合时间将大大减少。运动部件的过快动作,将加大运动部件接合时的冲击、碰撞、反弹,从而增大触点回跳,加速机械磨损,降低触点的负载能力与机械寿命。因此,串联供电激励方式改变了继电器原设计所规定的正常工作状态,一般是不可取的。当触点回跳、机械磨损对实际使用不构成利害关系,且特别需要加快动作速度时,才可以采用提高激励电压或串联电阻供电激励方式。4.6关于继电器线圈串联的使用不少电力系统用户采用多个继电器线圈串联后,再用DC 220 V电源去激励(如图4所示),这种激励方式必须谨慎采用。图4线圈串联(1) 对相同类型、相同规格继电器产品而言,由于各线圈的阻抗(含直流电阻与瞬时感抗)大体相同,差值较小,故采用串联分压激励方式使用问题不大。实践证明也是可行的。(2) 对不同类型或不同规格的继电器产品言之,由于不同继电器线圈的阻抗不一致,且差值随瞬时感抗的不同而相差很大,故串联激励瞬间,各继电器线圈上所分得的激励电压(由瞬时分压比决定)差值必然很大,势必出现有的继电器处于过压激励状态,有的则处于欠压激励状态,各继电器触点的开关时序与速度将会发生本质性变化,必然会出现动作先、后,快、慢颠倒,开关不可靠等情况。因此,不同类型、不同规格的继电器线圈不宜采用串联分压激励方式。4.7关于继电器线圈并联使用在复杂的控制回路中,采用图5所示方法将2只(或多只)不同类型的继电器(如接触器K1、小型灵敏继电器K2)线圈并联使用的情况时有发生,在这种情况下,有可能产生K1延迟释放、触点断弧能力下降,K2被反向重复激励、触点误动作等实际问题。图5线圈并联原因分析:在直流控制回路中,K1,K2线圈所贮存的磁能可能相差很大。当开关Q断开后,K1(磁能大)的贮能将通过K2(磁能小)的线圈泄放,产生反向电流。从而导致K1释放时间延长,触点断弧速度迟缓,触点间燃弧时间延长;K2的释放时间短,随后被反向泄放电流所激励,甚至释放后瞬间重复吸合,产生误动作故障。建议改用图6所示的控制回路,避免上述因疏于研究而导致的不可靠现象。图6线圈串联激励开关后再并联作者单位:吴义彬,游廷光,刘正国洪都无线电厂,江西南昌330003徐金虎江西省电子产品监督检验所,江西南昌330003 电流互感器变比检查试验方法马继先郭东升文摘根据电流互感器的等值电路图,讨论了2种电流互感器变比检查试验方法(电流法和电压法)的原理和特点,推荐一种简便可靠的电流互感器变比检查现场试验方法电压法。关键词电流互感器变比检查电流法电压法不管是老标准还是新规程,都把电流互感器交接时和更换绕组后的现场变比检查试验列为重要试验项目。虽然电流互感器变比的准确度应由制造部门保证,但由于种种原因,现场试验时偶而也能检查出错误(大多是抽头引错)。因此现场变比检查试验成为多年不变的项目。电流互感器工作原理大致与变压器相同,不同的是变压器铁心内的交变主磁通是由一次线圈两端交流电压所产生,而电流互感器铁心内的交变主磁通是由一次线圈内电流所产生,一次主磁通在二次线圈中感应出二次电势而产生二次电流。从电流互感器工作原理可知:决定电流互感器变比的是一次线圈匝数与二次线圈匝数之比,影响电流互感器变比误差的主要原因有:(1)电流的大小,比差和角差随二次电流减小而增大;(2) 二次负荷的大小,比差和角差随二次负荷减小而减小;(3)二次负荷功率因数,随着二次负荷功率因数的增大,比差减小而角差增大;(4) 电源频率的影响;(5)其它因素。电流互感器内部参数也可能引起变比误差,如二次线圈内阻抗、铁心截面、铁心材料、二次线圈匝数等,但这是由设计和制造决定的。电流互感器变化的误差试验应由制造厂在出厂试验时完成或在试验室进行。而电流互感器变比现场试验属于检查性质,即不考虑上述影响电流互感器变比误差的原因而重点检查匝数比。根据电工原理,匝数比等于电压比或电流比之倒数。因此测量电压比和测量电流比都可以计算出匝数比。1试验方法分析 现根据试验接线图和等值电路图分别讨论电压法和电流法检查电流互感器变化试验的原理和特点。1.1电流法1.1.1试验原理电流法检查电流互感器变比试验接线图如图1所示。图1电流法的试验接线 电流源包括 1 台调压器、1 台升流器;L1、L2电流互感器一次线圈2 个端子;K1、K2电流互感器二次线圈2个端子;A1电流表(测量电流互感器一次电流);A2电流表(测量电流互感器二次电流)电流法检查电流互感器变比等值电路图如图2所示。图2电流法的等值电路 电流源;A电流表;I1电流互感器的一次电流;I2折算到一次侧的电流互感器二次电流;r1、x1电流互感器一次线圈电阻、漏抗;r2、x2折算到一次的电流互感器二次线圈电阻、漏抗;Zm电流互感器激磁阻抗当电流互感器正常运行时二次线圈处于短路状态,铁心磁密很低,即Zm很大。从等值电路图可知,当Zm很大时,I1I2。1.1.2电流法试验的特点电流法的优点是基本模拟电流互感器实际运行(仅是二次负荷的大小有差别),从原理上讲是一种无可挑剔的试验方法,同时能保证一定的准确度,也可以说是一种容易理解的试验方法。但是随着系统容量增加,电流互感器电流越来越大,可达数万安培。现场加电流至数百安培已有困难,数千安培或数万安培几乎不可能。降低一些试验电流对减小试验容量没有多大意义,降低太多则电流互感器误差骤增。1.2电压法1.2.1电压法试验原理电压法检查电流互感器变比试验接线图如图3所示。图3电压法的试验接线图 电压源(1 台调压器);L1、L2电流互感器一次线圈2个端子;K1、K2电流互感器二次线圈2个端子;V电压表,测量电流互感器二次电压;mV毫伏表,测量电流互感器一次电压电压法检查电流互感器变比等值电路图如图4所示。图4电压法的等值电路电压源;V电压表;mV毫伏表;I0电流互感器激磁电流;U1电流互感器一次电压;U2折算到一次侧的电流互感器二次电压;r1、x1电流互感器一次线圈电阻、漏抗;r2、x2折算到一次侧的电流互感器二次线圈电阻、漏抗;Zm电流互感器激磁阻抗当电压法测电流互感器变比时,一次线圈开路,铁心磁密很高,极易饱和。电压U2稍高,励磁电流I0增大很多。从等值电路图可得下式:U2I0(r2jx2)U1从式中可知引起误差的是I0(r2jx2),变比较小、额定电流5A的电流互感器二次线圈电阻和漏抗一般小于1,变比较大、额定电流为1A的电流互感器二次线圈电阻和漏抗一般115。以1台 220 kV、2500A1 A电流互感器现场试验数据为例:二次线圈施加电压250 kV,一次线圈测得电压100 mV,此时二次线圈激磁电流约2mA,二次线圈电阻和漏抗约15,I0(r2jx2)30 mV。30mV与250 V相比不可能引起误差。从上述分析可知:电压法测量电流互感器变比时只要限制激磁电流I0为mA级,即可保证一定的测量精度。1.2.2电压法试验的特点电压法的最大的优点是试验设备重量较轻,适合现场试验,只需要1个小调压器、1块电压表、1块毫伏表。仅仅是要注意限制二次线圈的励磁电流小于10mA,即可保证一定的准确度。2结论 (1)用电流法检查电流互感器变比的现场试验需要笨重的试验设备,而且达到数千安培几乎不可能。若试验电流降低太多,则电流互感器误差骤增。 (2)用电压法检查电流互感器变比的现场试验仅需要1个小调压器、1块电压表、1块毫伏表,是一种简便可靠的现场试验方法。 变压器纵差保护电流回路组别接线法 夏祖涛 湖北省潜江市供电局(433100) 1引言 变压器纵差保护是利用比较变压器两侧电流的幅值和相位的原理构成的。把变压器两侧的电流互感器按差接法接线,在正常运行和外部故障时,流入继电器的电流为两侧电流之差,其值接近为零,继电器不动作;在内部故障时,流入继电器的电流为两侧电流之和,其值为短路电流,继电器动作。 由此可见,变压器两侧电流互感器的接线正确与否,直接影响到纵差保护的动作可靠性。将三相变压器连接组别的概念及其测试方法引入两侧电流互感器的接线,可以在投运前有效地保证变压器纵差保护电流回路的接线正确。 2三相连接组与线圈同名端 三相线圈主要有星形连接(Y)、三角形连接(D)两种连接方式。根据变压器初、次级线圈线电压的相位关系,把变压器线圈的连接分成各种不同的组合,称为线圈的连接组。为了区别不同的连接组,常采用时钟表示法,即把高压侧线电压的向量作为时钟的长针,固定在12上,低压侧线电压的向量作为时钟的短针,看短针指在哪一个数字上,就作为该连接组的组别号。三相连接组的组号,与线圈的连接、绕向和线圈的标法有关,可以连接成12个组号。 由于变压器的初、次级线圈被同一磁道所交链,故初、次级线圈的感应电势有一定的极性关系,即当初级线圈的某一端瞬时电位为正时,次级线圈也必有一电位为正的对应端,这两个对应的同极性端点称为同名端,一般用符号表示。 3变压器纵差保护电流回路的接线特点 在电力系统中,双绕组变压器通常采用Yd11的接线方式,如图1(a)所示,因此,两侧电流的相位不一致,d侧电流比Y侧电流超前30,如图1(b)所示。按照纵差保护的构成原理,在正常运行和变压器外部故障的情况下,必须保证流入差动继电器的电流接近于零,即在电流回路接线上必须保证iA和ia之间的相位相差180。为此,两侧TA(电流互感器)应采取相应的接线方式,即变压器Y侧的TA采用Yd5接线;则变压器d侧的TA采用Yy12接线。对Yd11接线的变压器,当两侧的TA采用上述接线方式后,即可认为已消除了由于相位差的影响而出现的不平衡电流。同时,也可以认为能够避免由于电流回路接线不当而引起的保护误动。Yd11变压器两侧TA的接线方式及向量关系如图1所示。 4组别测试方法在电流回路接线中的应用 首先,确定变压器两侧各相TA的极性。选取从高压侧至低压侧为一次电流正方向,采用直流法,分别对两侧每相TA测试极性,标记TA二次线圈同名端。 第二,将两侧TA二次线圈连成三相组。对变压器Y侧三相TA二次线圈按照A相非同名端与B相同名端相连接、从节点引出iA的方式,依次连接并引出iB、iC,形成d接线;对变压器d侧TA的二次线圈,先将三相非同名端相互连接,引出中性线,再分别从同名端引出ia、ib、ic,形成Y0接线。如图1(a)所示。 第三,测试三相TA组别。分别将变压器两侧三相TA一次线圈的电流流出端短接,使三相TA一次线圈形成Y连接;按照变压器组别试验的方法,分别对高、低压侧TA进行组别测试,TA二次回路的测试点最好选择在保护屏端子排处。如果测试结果分别为Yd5和Yy12,则说明接线正确;否则,则应按照上述步骤重新进行检查与核对。 5结论 该接线方法,既适用于双绕组变压器,也适用于三绕组变压器,可以在现场将TA组别测试作为纵差保护投运前的必试项目。 双绕组变压器差动保护中电流互感器的接线黑龙江省红兴隆电业局袁范雄 摘要各类教科书在讲述变压器差动保护原理时,绘制的接线图各不相同,还有的并不标示电流互感器的极性。当运用这些原理来指导实际接线时,常常因概念上的混淆而发生接线错误。本文从应用的角度,在分析接线原理的基础上对双线圈变压器差动保护中电流互感器的几种接线方法进行了概括总结; 关键词 差电流接线 相位补偿 极性1、电流互感器的基本接线形式 2组电流互感器的二次绕组可接成和电流与差电流2种接线形式。差电流接线的特点是一组电流互感器二次绕组反极性与另一组相接,即所谓循环电流法接线。差动保护就是将变压器两侧的电流互感器二次绕组按差电流的方法接线,再将其输出电流接入差动继电器所构成的一种变压器保护。它的保护范围为变压器两侧电流互感器之间的部分。在实际使用中,变压器差动保护的接线图往往有如图1的接线形式。 在变压器正常运行及保护范围外发生短路时,变压器两侧流入差动继电器的电流相量互差180,其相量和为零。在保护范围内发生短路,当流入差动继电器的电流相量大于继电器动作值时继电器将动作,使变压器两侧的开关跳闸。2变压器Y,dll接线所带来的问题 为减少三次谐波的影响,变压器线组别多采用Y,d11接线。如此即形成变压器两侧电流之间有30。的相位差,使得在正常情况下有不平衡电流流入差动继电器。为了消除这种影响,可将变压器两侧的电流互感器二次绕组按一定方式接线,用来校正这种相位差。校正相位差的接线方法是:变压器Y侧的电流互感器二次绕组铵形接线,而变压器侧的电流互感器二次绕组按Y形接线。因形接线和Y形接线可采用不同的连接方法,因此可能由于电流互感器接线错误而不能形成正确的相位补偿,导致差动保护发生误动作。3差动保护的2种接线方法 通常电流互感器为减极性的,即电流互感器一、二次绕组对应端于极性相同。在设备安装时,一般将变压器两侧电流互感器的正极性端皆靠近各自的母线安装。此时,差动保护可有如下2种接线方法。 方法一:“引头”法。形接线的电流互感器二次绕组采用a头b尾,b头c尾,c头a尾连接,同时以头为引出线;Y形接线的电流互感器二次绕组采用连尾引头的接线方法。其接线图见图2(a),向量关系见图2(b)。由于变压器的接线组别为Y、d11、其侧电流IAB超前Y侧电流认为30。采用了相位补偿接线,使变压器侧电流互感器二次电流Iab滞后变压器Y侧电流互感器二次电流Iab为30。,正好补偿了这一相位差。差电流接线使Iab:、与Iab之间还有180。的相位差。因此由图2(c)可以看出,采用差电流接线和相位补偿接线后,使Iab总共滞后Iab210。这样,差动保护两侧电流的相位完全满足要求。方法二:“引尾”法。形接线的电流互感器二次绕组采用a头c尾,c头b尾,b头a尾连接,同时以尾为引出线Y形接线的电流互感器二次绕组采用连头引尾的接线方法。其接线图见图3(a),向量关系见固3(b),变压器两侧电流互感器一二次电流的相位关系见图3(c)。4当正极性端靠近变压器时安装 如果变压器两侧电流互感器的正极性端皆靠近变压器安装,即变压器两侧电流互感器全部为反极性、我们仍可用上述的2种接线方法来接线。画法形式相同,仅仅电流互感器的极性相反而已。因此我们不妨也可以这样理解:电流互感器极性正负的标示是相对的,如果我们把电流互感器的负极性端当成“头”而正极性端当成“尾”来接线,接线方法完全一样。5电流互感器非规范安装如果在实际工作中变压器两侧的电流互感器并未按照前述规律安装(正极性端皆靠近母线或皆靠近变压器),而是一侧电流互感器正极性端靠近本侧母线,而另一侧电流互感器正极性端靠近变压器。这时,电流互感器二次绕组的接线就不能采用前述从变压器两侧同时“引头”或同时“引尾”的接线方法、 而应接成:变压器一侧采用“引头”接线而另一侧采用“引尾”接线。一般应以一侧电流互感器的极性为准来决定另一侧的接线。在图4中,变压器两侧电流互感器极性非规范安装、当变压器Y侧电流互感器二次绕组采用a头b尾,b头c尾,c头a尾连接并以头为引出线时,变压器侧电流互感器二次绕组采用连头引尾的接线。从相量分析看出,这样接线是正确的。6电流互感器可以不标示极性 由前面的分析看出,变压器两侧电流互感器的正极性无论怎样放置,都可获得正确的接线。电流互感器不标示极性,意思是其正极性的具体位置无关紧要。但是,变压器两侧电流互感器之间一二次电流的关系是相对固定的。在双绕组变压器差动保护的电流互感器接线时。只要能掌握差电流和相位补偿的接线原理,保证变压器两侧流入差动继电器电流的相位关系,并灵活运用前面讲到的差动保护的2种接线方法,那么,无论对电流互感器的极性如何标示或根本不标示,在实际工作中都不致发生接线错误。 变压器铁芯多点接地故障的分析判断斑竹整理 目前,我国制造的大中型变压器的铁芯都经一只套管引至油箱体外部接地。这是因为电力变压器在正常运行时,绕组周围存在电场,而铁芯和夹件等金属构件处于该电场之中,且场强各异。若铁芯不可靠接地,则产生充放电现象,损坏其固体和油绝缘。因此,铁芯必须有一点可靠接地。如果铁芯由于某种原因在某位置出现另一噗接地时,形成闭合回路,则正常接地的引线上就会有环流,这就是人们常说的铁芯多点接地故障。变压器的铁芯多点接地后,一方面会造成铁芯局部短路过热,严重时,会造成铁芯局部烧损,酿成更换铁芯硅钢片的重大故障;另一方面由于铁芯的正常接地线产生环流,引起变压器局部过热,也可能产生放电性故障。有关统计资料表明,因铁芯多点接地造成的事故占变压器总事故中的第三位。本文通过山东铝业公司电解铝厂ZHSFP-27850/110型整流变现场吊芯检修实例,对变压器铁芯多点接地的分析判断和处理方法作一简单的介绍。1、铁芯多点接地故障的判断1.1 测量铁芯绝缘电阻如铁芯绝缘电阻为零或很低,则表明可能存在铁芯接地故障。1.2 监视接地线中环流对铁芯或夹件通过小套管引起接地的变压器,应监视接地线中是否有环泫,如有,则要使变压器停运,测量铁芯的绝缘电阻。1.3 气相色谱分析利用气相色谱分析法,对油中含气量进行分析,也是发现变压器铁芯接地最有效的方法。发现铁芯接地故障的变压器,其油色谱分析数据通常有以下特征:总烃含量超过“变压器油中溶解气体和判断导则”(GB7252-87)规定的注意值(150L/L),其中乙烯(C2H4)、甲烷(C2H2)含量低或不出现,即未达到规定注意值(5L/L)。若出现乙炔也超过注意值,则可能是动态接地故障。气相色谱分析法可与前两种方法综合起来,共同判定铁芯是否多点接地。2、现场简易处理方法2.1 不吊芯临时串接限流电阻运行中发现变压器铁芯多点接地故障后,为保证设备的安全,均需停电进行吊芯检查和处理。但对于系统暂不允许停电检查的,可采用在外引铁芯接地回路上串接电阻的临时应急措施,以限制铁芯接地回路的环流,防止故障进一步恶化。在串接电阻前,分别对铁芯接地回路的环流和开路电压进行测量,然后计算应串电阻阻值。注意所串电阻不宜太大,以保护铁芯基本处于地电位;也不宜太小,以能将环流限制在0.1A以下。同时还需注意所串电阻的热容量,以防烧坏电阻造成铁芯开路。2.2 吊芯检查(1)分部测量各夹件或穿心螺杆对铁芯(两分半式铁芯可将中间连片打开)的绝缘以逐步缩小故障查找范围。(2)检查各间隙、槽部重点部位有无螺帽、硅钢片、废料等金属杂物。(3)清除铁芯或绝缘垫片上的铁锈或油泥,对铁芯底部看不到的地方用铁丝进行清理。(4)对各间隙进行油冲洗或氮气冲吹清理。(5)用榔头敲击振动夹件,同时用摇表监测,看绝缘是否发生变化,查找并消除动态接地点。2.3 放电冲击法由于受变压器身在空气中暴露时间不宜太长的限制,以及变压器本身装配型式的制约,现场很多情况下无法找到其具体确切接地点,特别是由于铁锈焊渣悬浮、油泥沉积造成的多点接地,更是难于查找。此类故障可采用放电冲击法,这种方法要视现场具体情况、接地方式和接地程度,在吊芯或不吊芯状态下可进行。现场应用时,主要有电容直流电压法和电焊机交流电流法。电焊机交流电流法只适用于金属性接地故障,但电流不好控制,而现场这种情况极少,接地电阻大都几百欧以上。电容直流电压法现场取材较困难,操作不便且不安全,也不宜推广。根据笔者成功检修实例和现场经验,本文介绍一种安全可靠、操作简便,而且利于快速就地取材的方法。这种方法就是利用高压电气试验用升压变压器进行放电冲击。原理图见图1。现场应用时注意换算好二次电压,由于铁芯对地绝缘垫片很薄,故二次电压不能高于2500V。3、现场实例1999年9月26日,山东铝为公司电解铝厂3#整流变(ZHSFP-27850/110)在吊芯大修时发现铁芯积铁锈很多,铁芯对夹件绝缘为0.15M(用500V摇表摇测),用数字万用表测得电阻值约为990k,故判定铁芯出现非金属性多点接地故障,处理步骤如下:(1)各绝缘薄弱重点部分外观检查,未发现有明显接地点和放电痕迹。(2)分部摇测两分半铁芯对夹件绝缘,其中一半绝缘为500M,另一半为0.15M,说明是一侧铁芯多点接地。(3)以接地一侧为重点,对铁芯和绝缘垫片的铁锈、油泥等杂物进行清理后,绝缘电阻无变化。(4)分别摇测现场能够测到的绝缘片的表面绝缘电阻,均未发现问题。(5)用榔头敲击振动夹件,同时用摇表监测绝缘电阻,没有发现变化。(6)在箱体内对铁芯进行了两次油泥冲洗后,接地现象仍未消失。(7)根据以上检查,分析认定是由于悬浮铁锈在电磁力的作用下,沉积在线圈内部夹件与铁芯的绝缘表面上形成稳定的非金属性接地故障,故决定用放电冲击法。利用现场电气试验班组的升压变压器进行慢慢升压放电(一定注意电流和电压的变化缓缓操作,电压不允许超过2500V)。当升至1000V左右时,听见线圈内部“砰”的一声,接着停止测量绝缘电阻,发现绝缘电阻升至3M。继续升至,当升至1650V左右时,又听见线圈内部“砰”的一声,停下测量绝缘电阻,发现绝缘电阻已上升到500M。至此,多点接地故障已消除。4、建议(1)运行中的变压器最好能在铁芯接地线上装设电流表,便于及时发现故障。特别是在放电冲击法消除接地现象后,更要加强监视,防止再次形成故障。(2)当出现铁芯多点接地故障时,要进行综合测定和全面分析检查后,再视现场具体情况选择处理方案,切不可盲目进行放电冲击或电焊烧除,以免造成绝缘损坏,使故障扩大。(3)每次吊芯大修时,一定要清洁油箱底部的油泥铁锈等杂物,并用油进行一次全面冲洗。(4)加强潜油泵及冷却器的检修,防止由于轴承的磨损或金属的剥落,引起变压器铁芯多点接地故障。 微机保护装置的现场检验四川双马水泥股份有限公司(621716) 吴辉斌 微机保护与常规保护相比,改善了保护性能,提高了保护的可靠性。但是由于微机保护装置中使用了大量集成芯片,以及软硬件的不断升级,增加了用户掌握其原理的难度。现结合我公司微机保护应用,介绍微机保护装置现场检验的一些注意事项、检验项目和方法。 l注意事项 (1)不可在带电状态下拔出和插入插件。 (2)发现装置工作不正常时,应仔细分析。判断故障原因及部位,不可轻易更换芯片。如确需更换芯片,应注意芯片插入的方向,且应保证芯片的所有引脚与插座接触良好。 (3)如需对插件板上某些焊点进行焊接,应将电烙铁脱离交流电源后再进行焊接,或用带有接地线的内热式电烙铁焊接。 (4)应用黑色不干胶封住放置保护程序的EPROM芯片窗口,以防止日光照射芯片而使程序发生变化。 (5)在检验屏内配件及线路时,电压、电流应从屏上端子排上加入。 (6)试验接线应保证在模拟短路时电压和电流变化的同时性。 (7)若在交流电压(或电流)回路对地之间接有抗干扰电容、且试验时所加电压、电流为不对称量时,则应将抗干扰电容的接地点断开,以防止由于抗干扰电容的锅台而在非故障相产生电压,从而造成保护装置的误动作。 (8)在运行状态下需断开电流、电压线时,应保证电流互感器二次线不开路,电压互感器二次线不短路。 2检验项目及方法 21数据采集系统的检验 (1)零点漂移。此时,微机保护装置各交流端子均开路,不加电压、电流。对于不同型号早期或近期的微机保护装置,可通过分离式键盘显示器或人机对话显示和键盘,观察各个模拟量采集值。对二次额定电流为;A的微机保护装置,采样值应在-03+03范围内;对于二次额定电流为1A的微机保护装置、采样值应在-01+01范围内。若检查的结果不符合要求,则应进行调整。对于早期产品、可用转插板将vFc插件或cPu插件转接出来,调节有偏移回路的电位计。对近期的产品可直接通过人机对话显示和键盘调出相应的菜单进行调整。 (2)电流、电压通道。分别加入各相一定数量的电流、电压,观察显示值的误差是否在该产品规定的误差范围内。若超过范围,则按调整零点漂移误差的方法进行调整。若某路模拟量不能加入该装置、则检查微机保护装置内的线路是否松脱,对应的电流变换器或电压变换器、AD转换器、UF转换器是否损坏,以及电流、电压通道的其它元件是否损坏。 22硬件电路

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论