



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.4 平行四边形(2)复习回顾: 平行四边形的概念:_ 平行四边形有哪些性质?边_ 角_ 对角线_探索新知:活动一、操作:在方格纸上画两条互相平行并且相等的线段ad,bc,连接ab,dc。检验线段ab与dc是否互相平行?思考:所画的四边形abcd是平行四边形吗?为什么? 结论一:一组 _ 的四边形是平行四边形。活动二、操作:1、画两条相交直线a,b,设交点为o 2、在直线a上截取oa=oc,在直线b上截取ob=od,连接ab,bc,cd,da。思考所画的四边形abcd是平行四边形吗?为什么结论二:2条_的四边形是平行四边形。 知识运用例1、如图,在四边形abcd中,ab=cd,ad=cb。四边形abcd是否是平行四边形?为什么?结论三:2组_的四边形是平行四边形例2、 如图,在四边形abcd中,a=c,b=d。四边形abcd是否是平行四边形?为什么?结论四:2组_的四边形是平行四边形当堂反馈1、下列两个图形,可以组成平行四边形的是( )a.两个等腰三角形 b. 两个直角三角形 c. 两个锐角三角形 d. 两个全等三角形2、能确定四边形是平行四边形的条件是( )a.一组对边平行,另一组对边相等 b. 一组对边平行,一组对角相等c. 一组对边平行,一组邻角相等 d. 一组对边平行,两条对角线相等3、已知:四边形abcd中,abcd,要使四边形abcd为平行四边形,需添加一个条件是: (只需填一个你认为正确的条件即可)。4、四边形abcd,ac、bd相交于点o,若oa=oc,ob=od,则四边形abcd是_,根据是_5、四边形abcd中,ab/cd,且ab=cd,则四边形abcd是_,理由是_6、对于四边形abcd,如果从条件abcd adbcab=cdbc=ad中选出2个, 那么能说明四边形abcd是平行四边形的有 _(填序号,填出符合条件的一种情况即可)7、 若对角线ac、bd相交于点o,且oa=oc,则只需添加一个条件_ , 能说明四边形abcd是平行四边形.8、判断题:(1)一组对边平行且另一组对边相等的四边形是平行四边形;( ) (2)两组对角都相等的四边形是平行四边形 ( )(3)一组对边平行且一组对角相等的四边形是平行四边形( ) (4)一组对边平行,一组邻角互补的四边形是平行四边形( ) (5)两组邻角互补的四边形是平行四边形. ( )9.如图,aced,点b在ac上且ab=ed=bc 。找出图中的平行四边形.并说明 10、如图,在四边形abcd中,abcd,a=c,四边形abcd是平行四边形吗?为什么?11、如图,在 abcd中,点e、f分别在ab、cd上,ae=cf.四边形debf是平行四边形吗?为什么? 12、abcd的对角线相交于点o,e、f分别是ob、od的中点,四边形aecf是平行四边形吗?为什么? 拓展延伸:1、如图, abcd的对角线相交于点o,直线ef过点o分别交bc、ad于点e、f,g、h分别为ob、od的中点,四边形gehf是平行四边形吗?为什么? 2、如图,在abcd中,aebd,cfbd,垂足分别是e、f,四边形aecf是平行四边形吗?为什么? 3、如图,在平行四边形abcd中,点e在ac上,ae=2ec,点f在ab上,bf=2af,如果bef的面积为2cm2,求平行四边形abcd的面积。3、在四边形abcd中,adbc,且adbc,bc=6cm,p、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工艺流程考试题及答案
- 合作共赢协议之承诺书9篇范文
- 2025年医学考研临床真题及答案
- 高级智商考试题及答案大全
- 高二考试题及答案解析
- 2025年采购管理岗面试题及答案
- 高级医生模拟考试题及答案
- 走过玫瑰花丛的作文(5篇)
- 供应链风险评估及应对模板
- 2025年保育员理论知识试卷及答案
- 2023麻醉科导管相关性血流感染预防专家共识
- 黑龙江省道外区2023年中考二模语文试卷【含答案】
- 中国传统文化考试复习题库(带答案)
- 国家标准版药学专业知识(一)药理
- 食品分析实验报告
- GB/T 34539-2017氢氧发生器安全技术要求
- 体育馆场地使用申请表(羽毛球馆、乒乓球馆、篮球馆、多功能厅、瑜伽馆)
- 高中信息技术粤教版高中必修信息技术基础第三章信息的加工与表达3.1.2日常文本信息
- 2023年新高考模拟考试英语试卷(共18份)(含答案)
- 荧光的原理及应用课件-
- 景区服务培训
评论
0/150
提交评论