内模控制技术.ppt_第1页
内模控制技术.ppt_第2页
内模控制技术.ppt_第3页
内模控制技术.ppt_第4页
内模控制技术.ppt_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章内模控制技术 第一节纯滞后特性对控制系统的影响 一 纯滞后特性衡量过程具有纯滞后的大小通常采用过程纯滞后时间与过程惯性时间常数的比 时 一般纯滞后过程 时 大纯滞后过程 二 控制系统中纯滞后传递函数模型典型环节传递函数1 一阶2 二阶3 非自平衡过程 三 纯滞后特性对控制系统的影响控制系统典型结构 三 纯滞后特性对控制系统的影响1 纯滞后出现在干扰通道系统的稳定性不受纯滞后特性的影响2 纯滞后出现在反馈通道特征根受到纯滞后时间的影响 不利于系统的稳定性 使系统的控制品质变差 3 纯滞后出现在前向通道影响系统的稳定性和控制品质 四 纯滞后系统的MATLAB计算及仿真1 纯滞后特性的近似用MATLAB函数命令pade 来近似其传递函数 np dp pade tan n 2 带纯滞后特性闭环系统的近似模型 带纯滞后特性闭环系统的典型结构图 2 带纯滞后特性闭环系统的近似模型 R s Y s Gc s G s Gm s 带纯滞后特性闭环系统的近似结构图 Pd s 3 仿真实例 已知大纯滞后系统的被控广义对象传递函数为 设定控制用PID调节器传递函数为 对系统的PID控制与Smith控制分别进行仿真 PID控制的仿真程序 L5405a mn1 2 d1 41 G1 tf n1 d1 tau 4 np dp pade tau 2 Gp tf np dp n2 7 0234 2950 06875 d2 0 92876 0950 G2 tf n2 d2 sys feedback G1 G2 Gp y t step sys set sys Td tau t1 0 0 01 200 step sys t1 PID控制的阶跃响应曲线 超调量 8 7348 峰值时间 6 5780s 调节时间 7 0166s Smith预估控制的仿真程序 L1517a mn1 2 d1 41 G1 tf n1 d1 tau 4 np dp pade tau 2 Gp tf np dp n2 7 0234 2950 06875 d2 0 92876 0950 G2 tf n2 d2 sys feedback G1 G2 1 y t step sys set sys Td tau t 0 0 01 400 step sys t Smith预估控制的阶跃响应曲线 较好的控制了对PID控制的振荡曲线 使被延迟了的被控量提前反映到调节器 减小超调使之成为单调上升的过程 第二节内模控制技术 内模控制 InternalModelControl IMC 是一种基于过程数学模型进行控制器设计的新型控制策略 它与史密斯预估控制很相似 有一个被称为内部模型的过程模型 控制器设计可由过程模型直接求取 设计简单 控制性能好 鲁棒性强 并且便于系统分析 图6 1内模控制结构框图 实际对象 对象模型 给定值 系统输出 在控制对象输出上叠加的扰动 内模控制器的设计思路是从理想控制器出发 然后考虑了某些实际存在的约束 再回到实际控制器的 1 什么是内模控制 讨论两种不同输入情况下 系统的输出情况 1 当时 假若模型准确 即 由图可见 假若 模型可倒 即可以实现 可得 不管如何变化 对的影响为零 表明控制器是克服外界扰动的理想控制器 则令 2 当时 假若模型准确 即 又因为 则 表明控制器是跟踪变化的理想控制器 其反馈信号 内模控制系统具有开环结构 当模型没有误差 且没有外界扰动时 1 对偶稳定性若模型是准确的 则IMC系统内部稳定的充要条件是过程与控制器都是稳定的 所以 IMC系统闭环稳定性只取决于前向通道的各环节自身的稳定性 结论 对于开环不稳定系统 在使用IMC之前将其稳定 内模控制的主要性质 2 理想控制器特性当模型是准确的 且模型稳定 若设计控制器使 且存在并可实现则 控制器具有理想控制器特性 即在所有时间内和任何干扰作用下 系统输出都等于输入设定值 保证对参考输入的无偏差跟踪 内模控制的主要性质 3 零稳态偏差特性I型系统 模型存在偏差 闭环系统稳定 只要设计控制器满足即控制器的稳态增益等于模型稳态增益的倒数 对于阶跃输入和常值干扰均不存在稳态误差 II型系统 模型存在偏差 闭环系统稳定 只要设计控制器满足 且 对于所有斜坡输入和常值干扰均不存在稳态误差 IMC系统本身具有偏差积分作用 内模控制的主要性质 1 若对象含有滞后特性则中含有纯超前项 物理上难以实现 2 若对象含有s平面右半平面 RHP 零点 则中含有RHP极点 控制器本身不稳定 闭环系统不稳定 3 若对象模型严格有理 则非有理 即中将出现N阶微分器 对过程测量信号中的噪声极为敏感 不切实际 4 采用理想控制器构成的系统 对模型误差极为敏感 鲁棒性 稳定性变差 内模控制的实现问题 2 内模控制器的设计 步骤1因式分解过程模型 式中 包含了所有的纯滞后和右半平面的零点 并规定其静态增益为1 为过程模型的最小相位部分 步骤2设计控制器 这里f为IMC滤波器 选择滤波器的形式 以保证内模控制器为真分式 整数 选择原则是使成为有理传递函数 对于阶跃输入信号 可以确定 型IMC滤波器的形式 对于斜坡输入信号 可以确定 型IMC滤波器的形式为 滤波器时间常数 因此 假设模型没有误差 可得 设时 表明 滤波器与闭环性能有非常直接的关系 滤波器中的时间常数是个可调整的参数 时间常数越小 对的跟踪滞后越小 事实上 滤波器在内模控制中还有另一重要作用 即利用它可以调整系统的鲁棒性 其规律是 时间常数越大 系统鲁棒性越好 讨论 1 当 时 滤波时间常数取不同值时 系统的输出情况 2 当 由于外界干扰使由1变为1 3 取不同值时 系统的输出情况 例3 1过程工业中的一阶加纯滞后过程 无模型失配和无外部扰动的情况 则 在单位阶跃信号作用下 设计IMC控制器为 1 4曲线分别为取0 1 0 5 1 2 2 5时 系统的输出曲线 图6 2过程无扰动图6 3过程有扰动 例3 2考虑实际过程为 内部模型为 a IMC系统结构 b Smith预估控制系统结构 图6 4存在模型误差时的系统结构图 比较IMC和Smith预估控制两种控制策略 不存在模型误差仿真输出存在模型误差时IMC仿真存在模型误差时Smish预估控制仿真 a b c 3内模PID控制 1 PID控制器的基本形式 理想形式 对于模拟元件实现的工业PID 图3 2内模控制的等效变换 图中虚线方框为等效的一般反馈控制器结构 图中虚线方框为内模控制器结构 2 基于内模的PID控制器 用IMC模型获得PID控制器的设计方法 反馈系统控制器为 即 因为在时 得 可以看到控制器的零频增益为无穷大 因此可以消除由外界阶跃扰动引起的余差 这表明尽管内模控制器本身没有积分功能 但由内模控制的结构保证了整个内模控制可以消除余差 可以将写为 当模型已知时 将上式和实际的PID算式 对应系数相等 求解即可得基于内模控制原理的PID控制器各参数 对上式中含有的滞后项进行近似 Pade近似和Taylor近似 例3 3设计一阶加纯滞后过程的IMC PID控制器 对纯滞后时间使用一阶Pade近似 分解出可逆和不可逆部分 构成理想控制器 加一个滤波器这时不需要使为有理 因为PID控制器还没有得到 容许的分子比分母多项式的阶数高一阶 由 展开分子项 选PID控制器的传递函数形式为 比较 式 用乘以 式 与常规PID控制器参数整定相比 IMC PID控制器参数整定仅需要调整比例增益 比例增益与是反比关系 大 比例增益小 小 比例增益大 得 仿真实例1 仿真实例2 4 内模控制的离散算式 图3 3离散形式的内模控制 式中 为过程非最小相位部分 包含纯滞后 包含单位圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论