




免费预览已结束,剩余17页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数学教学素材(一) 无理数的发现第一次数学危机 大约公元前世纪,不可通约量的发现导致了毕达哥拉斯悖论。当时的毕达哥拉斯学派重视自然及社会中不变因素的研究,把几何、算术、天文、音乐称为四艺,在其中追求宇宙的和谐规律性。他们认为:宇宙间一切事物都可归结为整数或整数之比,毕达哥拉斯学派的一项重大贡献是证明了勾股定理,但由此也发现了一些直角三角形的斜边不能表示成整数或整数之比(不可通约)的情形,如直角边长均为的直角三角形就是如此。这一悖论直接触犯了毕氏学派的根本信条,导致了当时认识上的危机,从而产生了第一次数学危机。 到了公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得原本第卷中。欧多克斯和狄德金于1872年给出的无理数的解释与现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微妙之处。 第一次数学危机对古希腊的数学观点有极大冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,推理证明才是可靠的,从此希腊人开始重视演译推理,并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命! 无穷小是零吗?第二次数学危机18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。 1734年,英国哲学家、大主教贝克莱发表分析学家或者向一个不信正教数学家的进言,矛头指向微积分的基础-无穷小的问题,提出了所谓贝克莱悖论。他指出:牛顿在求xn的导数时,采取了先给x以增量,应用二项式(x+0)n,从中减去xn以求得增量,并除以以求出xn的增量与x的增量之比,然后又让消逝,这样得出增量的最终比。这里牛顿做了违反矛盾律的手续先设x有增量,又令增量为零,也即假设x没有增量。他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,dx为逝去量的灵魂。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。 18世纪的数学思想的确是不严密的,直观的强调形式的计算而不管基础的可靠。其中特别是:没有清楚的无穷小概念,从而导数、微分、积分等概念也不清楚,无穷大概念不清楚,以及发散级数求和的任意性,符号的不严格使用,不考虑连续就进行微分,不考虑导数及积分的存在性以及函数可否展成幂级数等等。 直到19世纪20年代,一些数学家才比较关注于微积分的严格基础。从波尔查诺、阿贝尔、柯西、狄里赫利等人的工作开始,到威尔斯特拉斯、戴德金和康托的工作结束,中间经历了半个多世纪,基本上解决了矛盾,为数学分析奠定了严格的基础。 悖论的产生-第三次数学危机 数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。 1897年,福尔蒂揭示了集合论中的第一个悖论。两年后,康托发现了很相似的悖论。1902年,罗素又发现了一个悖论,它除了涉及集合概念本身外不涉及别的概念。罗素悖论曾被以多种形式通俗化。其中最著名的是罗素于1919年给出的,它涉及到某村理发师的困境。理发师宣布了这样一条原则:他给所有不给自己刮脸的人刮脸,并且,只给村里这样的人刮脸。当人们试图回答下列疑问时,就认识到了这种情况的悖论性质:理发师是否自己给自己刮脸?如果他不给自己刮脸,那么他按原则就该为自己刮脸;如果他给自己刮脸,那么他就不符合他的原则。 罗素悖论使整个数学大厦动摇了。无怪乎弗雷格在收到罗素的信之后,在他刚要出版的算术的基本法则第卷末尾写道:一位科学家不会碰到比这更难堪的事情了,即在工作完成之时,它的基础垮掉了,当本书等待印出的时候,罗素先生的一封信把我置于这种境地。于是终结了近12年的刻苦钻研。 承认无穷集合,承认无穷基数,就好像一切灾难都出来了,这就是第三次数学危机的实质。尽管悖论可以消除,矛盾可以解决,然而数学的确定性却在一步一步地丧失。现代公理集合论的大堆公理,简直难说孰真孰假,可是又不能把它们都消除掉,它们跟整个数学是血肉相连的。所以,第三次危机表面上解决了,实质上更深刻地以其它形式延续着。 的历史 圆的周长与直径之比是一个常数,人们称之为圆周率。通常用希腊字母 来表示。1706年,英国人琼斯首次创用 代表圆周率。他的符号并未立刻被采用,以后,欧拉予以提倡,才渐渐推广开来。现在 已成为圆周率的专用符号, 的研究,在一定程度上反映这个地区或时代的数学水平,它的历史是饶有趣味的。 在古代,实际上长期使用 这个数值,巴比伦、印度、中国都是如此。到公元前世纪,中国的周髀算经里已有周三径一的记载。东汉的数学家又将 值改为 (约为3.16)。直正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他专门写了一篇论文圆的度量,用几何方法证明了圆周率与圆直径之比小于22/7而大于223/71 。这是第一次在科学中创用上、下界来确定近似值。第一次用正确方法计算 值的,是魏晋时期的刘徽,在公元263年,他首创了用圆的内接正多边形的面积来逼近圆面积的方法,算得 值为3.14。我国称这种方法为割圆术。直到1200年后,西方人才找到了类似的方法。后人为纪念刘徽的贡献,将3.14称为徽率。 公元460年,南朝的祖冲之利用刘徽的割圆术,把 值算到小点后第七位3.1415926,这个具有七位小数的圆周率在当时是世界首次。祖冲之还找到了两个分数:22/7 和355/113 ,用分数来代替 ,极大地简化了计算,这种思想比西方也早一千多年。 祖冲之的圆周率,保持了一千多年的世界记录。终于在1596年,由荷兰数学家卢道夫打破了。他把 值推到小数点后第15位小数,最后推到第35位。为了纪念他这项成就,人们在他1610年去世后的墓碑上,刻上:3.14159265358979323846264338327950288这个数,从此也把它称为卢道夫数。 之后,西方数学家计算 的工作,有了飞速的进展。1948年1月,费格森与雷思奇合作,算出808位小数的 值。电子计算机问世后, 的人工计算宣告结束。20世纪50年代,人们借助计算机算得了10万位小数的 ,70年代又突破这个记录,算到了150万位。到90年代初,用新的计算方法,算到的 值已到4.8亿位。 的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。国际数学界的最高奖-菲尔兹奖和国际数学家大会 诺贝尔奖金中为什么没有设数学奖?对此人们一直有着各种猜测与议论。每年一度的诺贝尔物理、化学、生理学和医学奖,表彰了这几个学科中的重大成就,奖掖了科学精英,可谓举世瞩目。不设数学奖,对于这个重要的基础学科,岂不是失去了一个在世界范围内评价重大成就和杰出人才的机会? 其实,数学领域中也有一种世界性的奖励,这就是每四年颁发一次的菲尔兹奖。在各国数学家的眼里,菲尔兹奖所带来的荣誉可与诺贝尔奖金媲美。 菲尔兹奖是由国际数学联盟(简称imu)主持评定的,并且只在每四年召开一次的国际数学家大会(简称icm)上颁发。菲尔兹奖的权威性,部分地即来自于此。所以,这里先简单介绍一下联盟与大会。 十九世纪以来,数学取得了巨大的进展。新思想、新概念、新方法、新结果层出不穷。面对琳琅满目的新文献,连第一流的数学家也深感有国际交流的必要。他们迫切希望直接沟通,以便尽快把握发展大势。正是在这样的情况下,第一次国际数学家大会在苏黎世召开了。紧接着,一九年又在巴黎召开了第二次会议,在两个世纪的交接点上,德国数学家希尔伯特提出了承前启后的二十三个数学问题,使得这次大会成为名副其实的迎接新世纪的会议。自一九年以后,大会一般每四年召开一次。只是因为世界大战的影响,在一九一六年和一九四一九五年间中断举行。第二次世界大战以后的第一次大会是一九五年在美国举行的。在这次会议前夕,国际数学联盟成立了。这个联盟联络了全世界几乎所有的主要数学家,她的主要任务是促进数学事业的发展和国际交流,组织进行四年一次的国际数学家大会及其他专业性国际会议,颁发菲尔兹奖。自此以后,大会的召开比较正常。从一八九七年算起,总共举行了十九次大会,其中有九次是在一九五一九八三年间举行的。 联盟的日常事务由任期四年的执行委员会领导进行,近年来,这个委员会设主席一人,副主席二人,秘书长一人,一般委员五人,都是由在国际数坛上有影响的著名数学家担任。每次大会的议程,由执委会提名一个九人咨询委员会来编定。而菲尔兹奖的获奖人,则由执委会提名一个八人评定委员会来遴选。评委会的主席也就是执委会的主席,可见对这个奖的重视。这个评委会首先由每人提名,集中提出近四十个值得认真考虑的候选人,然后进行充分的讨论并广泛听取各国数学家的意见,最后在评定委员会内部投票决定本届菲尔兹奖的得奖人。 现在,国际数学家大会已是全世界数学家最重要的学术交流盛会了。一九五年以来,每次参加者都在两千人以上,最近两次大会的参加者更在三千人以上。这么多的参加者再加上这四年来无数的新成果,用什么方法才能很好地交流呢?近几次大会采取了分三个层次讲演的办法。以一九七八年为例,在各专业小组中自行申请作十分钟讲演的约有七百人,然后由咨询委员会确定在各专业组中作四十五分钟邀请讲演的名单约二百个,以及向全会作一小时综述报告的人选十七位。被指定作一小时报告是一种殊荣,报告者是当今最活跃的一些数学家,其中有不少是过去或未来的菲尔兹奖获得者。 菲尔兹奖的宣布与授予,是开幕式的主要内容。当执委会主席(即评委会主席)宣布本届得主名单之后,全场掌声雷动。接着由东道国的重要人士(当地市长、所在国科学院院长、甚至国王、总统),或评委会主席授予一块金质奖章,外加一干五百美元的奖金。最后由一些权威的数学家来介绍得奖人的杰出工作,并以此结束开幕式。 菲尔兹奖是以已故的加拿大数学家约翰查尔斯菲尔兹命名的。 一八六三年五月十四日,菲尔兹生子加拿大渥太华。他十一岁时父亲逝世,十八岁时又失去了慈母,家境不算太好。菲尔兹十七岁时进入多伦多大学专攻数学。一八八七年,菲尔兹二十四岁,就在美国约翰霍普金斯大学获得了博士学位。又过了两年,他在美国阿勒格尼大学当上了教授。 当时,世界数学的中心是在欧洲。北美的数学家差不多都要到欧洲学习、工作一段时间。一八九二年,菲尔兹远渡重洋,游学巴黎、柏林整整十年。在欧洲,他与福雪斯、弗劳伯纽斯等著名数学家有密切的交往。这一段经历,大大地开阔了菲尔兹的眼界。 作为一个数学家,菲尔兹的工作兴趣集中在代数函数方面,成就不算突出,但作为一名数学事业的组织、管理者,菲尔兹却是功绩卓著的。 菲尔兹很早就意识到研究生教育的重要,他是在加拿大推进研究生教育的第一人。现在人们都知道,一个国家的研究生培养情况如何,是衡量这个国家科学水平的一个可靠指数。而在当时,能有这样的认识实属难能可贵。 菲尔兹对于数学的国际交流的重要性,对于促进北美州数学的发展,都有一些卓越的见解。为了使北美的数学迅速赶上欧洲,菲尔兹竭尽全力主持筹备了一九二四年的多伦多国际数学家大会(这是在欧洲之外召开的第一次大会)。这次大会使他精疲力尽,健康状况再也没有好转,但这次会议对于北美的数学水平的成长产生了深远的影响。 一九二四年大会没有邀请德国等第一次世界大战的战败国的数学家。在此之前的一九二年大会,因为是在法国的斯特拉斯堡(战前属德国)举行,德国拒绝参加(一九二八年的波伦亚大会只是由于希尔伯特坚持,德国才参加了。)。这些事情很可能触发了菲尔兹发起一项国际性奖金的念头,因为菲尔兹强烈地主张数学发展应该是国际性的。当菲尔兹知道了一九二四年大会的经费有结余时,他就建议以此作为基金设立一项这样的奖。菲尔兹奔走欧美谋求支持,并想在-九三二年苏黎世大会亲自提出正式建议,结果未及开幕他就逝世了。是多伦多大学数学系的悉涅,把这个建议和一大笔钱(其中包括一九二四年大会的结余和菲尔兹的遗产)提交苏黎世大会,大会立即接受了这一建议。 按照菲尔兹的意见,这项奖金应该就叫国际奖金,而不应该以任何国家机构或个人的名字来命名。但是国际数学家大会还是决定命名为菲尔兹奖。数学家们希望用这一方式来表示对菲尔兹的纪念和赞许,他不是以自已的研究工作,而是以远见、组织才能和勤恳的工作促进了本世纪的数学事业。 第一次菲尔兹奖颁发于一九三六年。不久,国际形势急剧恶化。原定一九四年在美国召开的大会已成泡影。第二次的菲尔兹奖是在战后的第一次大会,即一九五年大会上颁发的。以后,每次大会都顺利地进行了这一议程。-般是每届两名获奖者。但一九六六年、一九七年、一九七八年得奖人是四名,据说是因为有一位不愿透露姓名的捐款人,使奖金可以临时增加到四份,一九八二年华沙会议因故而延期至一九八三年八月举行,获奖者为三名。总起来,获得菲尔兹奖的数学家己有二十七名。 在一九三六年、-九五年、一九五四年这三次大会上,都是由一位数学家来介绍所有得奖人的工作的。一九三六年卡拉凯渥铎利还讲了一点获奖者的生平。一九五年评委会主席玻尔就只用清晰而非专门的语言简述工作。一九五四年,由本世纪著名的数学家外尔介绍,他在结束语中盛赞两位得奖者所达到的高度是自己未曾梦想到的,自已从未见过这样的明星在数学天空中灿烂地升起,他说: 数学界为你们二位所做的工作感到骄傲。它表明数学这棵长满节瘤的老树仍然充满着汁液和生机。你们是怎样开始的,就怎样继续下去吧! 从一九五八年起,改成每位获奖者分别由一位数学家介绍。介绍的内容比较地局限于工作,对于获奖者个人的情况很少涉及。这个做法,一直延续到最近一次大会。 菲尔兹奖只是一枚金质奖章,与诺贝尔奖金的十万美元相比真是微不足道。为什么在人们心目中,菲尔兹奖的地位竟然与诺贝尔奖金相当? 原因看来很多。菲尔兹奖是由数学界的国际学术团体-国际数学联盟,从全世界的第一流数学家中遴选的。就权威性与国际性而言,任何其他的奖励都无法与之相比。菲尔兹奖四年才发一次,每次至多四名,因而获奖机会比诺贝尔奖要少得多。但是主要的原因应该是:迄今为止的获奖者用他们的杰出工作,证明了菲尔兹奖不愧为最重要的国际数学奖。事情就是这样:从表面上看,一项奖赏为获奖人带来了巨大荣誉;而事实上正相反,正是得奖工作的水准奠定了这项奖励的学术地位的基础。 菲尔兹奖首先是一项工作奖(这一点与诺贝尔奖金相同),即授予的原因只能是已经做出的成就,而不能是服务优秀、活动积极等其他原因。但是菲尔兹奖只授予四十岁以下的数学家(起先是一种默契,后来就成为不成文的规定),因此也带有一点鼓励性。问题在于,如果放在整个数学家的范围里,菲尔兹奖的得奖工作地位如何? 我们只举一个小小的例子。一九七八年,当代著名的老一辈数学家,布尔巴基学派创始人之一丢东涅发表了一篇题为论纯数学的当前趋势的论文,对于近二十年来纯数学各分支的前沿作了全面概述。在文章中,他列举了十三个目前处于主流的数学分支。其中十二个分支中的部分重要工作是由菲尔兹奖获得者作出的。这再清楚不过地说明了菲尔兹奖获奖成就的地位。 人们不能不承认,数学对于现实生活的影晌正在与日俱增。许多学科都在悄悄地或先或后地经历着一场数学化的进程。现在,已经没有哪个领域能够抵御得住数学方法的渗透。 数学本身也在一日千里地发展着。全世界成千上万的数学工作者正在几十个分支成百个专门方向上孜孜研究着。他们每年提出大约二十万条新定理!重要论文数,如以数学评论的摘要为准,每八至十年翻一番。文献数量的爆炸再加上方法概念的迅速更新,使得工作在不同方向上的数学家连交谈也有点困难,更不用说非数学专业的人了。 这样就产生了一个尖锐的矛盾。一方面,公众非常需要数学,他们渴望理解数学!另-方面,现代数学过于深刻、庞大、变得越来越不容易接近。 因此,对于数学,特别是现代数学加以普及,使得数学和数学家的工作能对现实生活产生应有的积极影响,这已成为人们日益重视的课题。 二十一世纪的曙光即将普照全球,要概述一下二十世纪的数学发展决非易事。就纯粹数学而言,我们觉得有两个主题可以起到提纲挈领的作用:一个是希尔伯特二十三问题的提出、解决现状与发展,另一个就是菲尔兹奖的获奖者及其工作。 作为一种表彰纯数学成就的奖励,菲尔兹奖当然不能体现现代数学的全部内容。就这个奖本身而言也有种种缺点。但是,无论从哪一方面讲,菲尔兹奖的获得者都可以作为当代数学家的代表,他们的工作所属的领域大体上覆盖了纯粹数学主流分支的前沿。这样,菲尔兹奖就成了一个窥视现代数学面貌的很好的窗口。21世纪七大数学难题 美国麻州的克雷(clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元。以下是这七个难题。“千僖难题”之一: p (多项式算法)问题对np (非多项式算法)问题 “千僖难题”之二: 霍奇(hodge)猜想 “千僖难题”之三: 庞加莱(poincare)猜想 “千僖难题”之四: 黎曼(riemann)假设 “千僖难题”之五: 杨米尔斯(yang-mills)存在性和质量缺口 “千僖难题”之六: 纳维叶斯托克斯(navier-stokes)方程的存在性与光滑性 “千僖难题”之七: 贝赫(birch)和斯维讷通戴尔nnerton-dyer)猜想 “千僖难题”之一:(多项式算法)问题对(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。由于感到局促不安,你想知道这一大厅中是否有你已经认识的人。你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的。然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。生成问题的一个解通常比验证一个给定的解时间花费要多得多。这是这种一般现象的一个例子。与此类似的是,如果某人告诉你,数,可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为乘上,那么你就可以用一个袖珍计算器容易验证这是对的。不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文考克()于年陈述的。 “千僖难题”之二: 霍奇(hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导至一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 “千僖难题”之三: 庞加莱(poincare)猜想如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面(四维空间中与原点有单位距离的点的全体)的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。 “千僖难题”之四: 黎曼(riemann)假设有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2,3,5,7,等等。这样的数称为素数;它们在纯数学及其应用中都起着重要作用。在所有自然数中,这种素数的分布并不遵循任何有规则的模式;然而,德国数学家黎曼(18261866)观察到,素数的频率紧密相关于一个精心构造的所谓黎曼蔡塔函数z(s$的性态。著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。 “千僖难题”之五: 杨米尔斯(yang-mills)存在性和质量缺口量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。基于杨米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。在这一问题上的进展需要在物理上和数学上两方面引进根本上的新观念。 “千僖难题”之六: 纳维叶斯托克斯(navier-stokes)方程的存在性与光滑性起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可以通过理解纳维叶斯托克斯方程的解,来对它们进行解释和预言。虽然这些方程是19世纪写下的,我们对它们的理解仍然极少。挑战在于对数学理论作出实质性的进展,使我们能解开隐藏在纳维叶斯托克斯方程中的奥秘。 “千僖难题”之七: 贝赫(birch)和斯维讷通戴尔nnerton-dyer)猜想数学家总是被诸如x2+y2=z2那样的代数方程的所有整数解的刻画问题着迷。欧几里德曾经对这一方程给出完全的解答,但是对于更为复杂的方程,这就变得极为困难。事实上,正如马蒂雅谢维奇(yu.v.matiyasevich)指出,希尔伯特第十问题是不可解的,即,不存在一般的方法来确定这样的方法是否有一个整数解。当解是一个阿贝尔簇的点时,贝赫和斯维讷通戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。 数学文化 作者:张奠宙数学作为一种文化现象,早已是人们的常识。历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家。最著名的如柏拉图和达芬奇。晚近以来,爱因斯坦、希尔伯特、罗素、冯诺依曼等文化名人也都是20世纪数学文明的缔造者。数学文化的存在价值在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(l.a.white)的数学文化论力图把数学回归到文化层面。克莱因(m.kline)的古今数学思想、西方文化中的数学、数学:确定性的丧失相继问世,力图营造数学文化的人文色彩。国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的数学与文化,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的数学与文化,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著数学文化学,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。认识和实施数学文化教育进入21世纪之后,数学文化的研究更加深入。一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动。那么,如何在中小学数学教学中进行数学文化教育呢?笔者认为应该从以下几个方面加以认识和实施。认识数学文化的民族性和世界性每个民族都有自己的文化,也就一定有属于这个文化的数学。古希腊的数学和中国传统数学都有辉煌的成就、优秀的传统。但是,它们之间有着明显的差异。古希腊和古代中国的不同政治文明孕育了不同的数学。古希腊是奴隶制国家。当时希腊的雅典城邦实行奴隶主的民主政治(广大奴隶不能享受这种民主)。男性奴隶主的全体大会选举执政官,对一些战争、财政大事实行民主表决。这种政治文明包含着某些合理的因素。奴隶主之间讲民主,往往需要用理由说服对方,使学术上的辩论风气浓厚。为了证明自己坚持的是真理,也就需要证明。先设一些人人皆同意的“公理”,规定一些名词的意义,然后把要陈述的命题,称为公理的逻辑推论。欧氏的几何原本正是在这样的背景下产生的。 中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度。春秋战国时期,也是知识分子自由表达见解的黄金年代。当时的思想家和数学家,主要目标是帮助君王统治臣民、管理国家。因此,中国的古代数学,多半以“管理数学”的形式出现,目的是为了丈量田亩、兴修水利、分配劳力、计算税收、运输粮食等国家管理的实用目标。理性探讨在这里退居其次。因此,从文化意义上看,中国数学可以说是“管理数学”和“木匠数学”,存在的形式则是官方的文书。古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标。因此,“对顶角相等”这样的命题,在几何原本里列入命题15,借助公理3(等量减等量,其差相等)给予证明。在中国的数学文化里,不可能给这样的直观命题留下位置。 同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展。负数的运用、解方程的开根法,以及杨辉(贾宪)三角、祖冲之的圆周率计算、天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视。 我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统。当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来。揭示数学文化内涵,走出数学孤立主义的阴影数学的内涵十分丰富。但在中国数学教育界,常常有“数学=逻辑”的观念。据调查,学生们把数学看作“一堆绝对真理的总集”,或者是“一种符号的游戏”。“数学遵循记忆事实-运用算法-执行记忆得来的公式-算出答案”的模式1,“数学=逻辑”的公式带来了许多负面影响。正如一位智者所说,一个充满活力的数学美女,只剩下一副x光照片上的骨架了!数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言、图表、符号表示,进行数学交流。通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美。半个多世纪以前,著名数学家柯朗(r.courant)在名著数学是什么的序言中这样写道:“今天,数学教育的传统地位陷入严重的危机。数学教学有时竟变成一种空洞的解题训练。数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系。教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础。” 2002年8月20日,丘成桐接受东方时空的采访时说:“我把史记当作歌剧来欣赏”,“由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样。” 这是一位数学大家的数学文化阐述。 文汇报2002年8月21日摘要刊出钱伟长的文章哥丁根学派的追求,其中提到:“这使我明白了:数学本身很美,然而不要被它迷了路。应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的。从这一观点上讲,我们应该是解决实际问题的优秀屠夫,而不是制刀的刀匠,更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠。”这是一个力学家的数学文化观。和所有文化现象一样,数学文化直接支配着人们的行动。孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成“怪人”。学校里的数学,原本是青少年喜爱的学科,却成为过滤的“筛子”、打人的“棒子”。优秀的数学文化,会是美丽动人的数学王后、得心应手的仆人、聪明伶俐的宠物。伴随着先进的数学文化,数学教学会变得生气勃勃、有血有肉、光彩照人。多侧面地开展数学文化研究谈到数学文化,往往会联想到数学史。确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径。但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念、数学方法、数学思想中揭示数学的文化底蕴。以下将阐述一些新视角,力求多侧面地展现数学文化。 1. 数学和文学。数学和文学的思考方法往往是相通的。举例来说,中学课程里有“对称”,文学中则有“对仗”。对称是一种变换,变过去了却有些性质保持不变。轴对称,即是依对称轴对折,图形的形状和大小都保持不变。那么对仗是什么?无非是上联变成下联,但是字词句的某些特性不变。王维诗云:“明月松间照,清泉石上流”。这里,明月对清泉,都是自然景物,没有变。形容词“明”对“清”,名词“月”对“泉”,词性不变。其余各词均如此。变化中的不变性质,在文化中、文学中、数学中,都广泛存在着。数学中的“对偶理论”,拓扑学的变与不变,都是这种思想的体现。文学意境也有和数学观念相通的地方。徐利治先生早就指出:“孤帆远影碧空尽”,正是极限概念的意境。2.欧氏几何和中国古代的时空观。初唐诗人陈子昂有句云:“前不见古人,后不见来者,念天地之悠悠,独怆然而涕下。”这是时间和三维欧几里得空间的文学描述。在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线。天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千。数学正是把这种人生感受精确化、形式化。诗人的想象可以补充我们的数学理解。3. 数学与语言。语言是文化的载体和外壳。数学的一种文化表现形式,就是把数学溶入语言之中。“不管三七二十一”涉及乘法口诀,“三下二除五就把它解决了”则是算盘口诀。再如“万无一失”,在中国语言里比喻“有绝对把握”,但是,这句成语可以联系“小概率事件”进行思考。“十万有一失”在航天器的零件中也是不允许的。此外,“指数爆炸”“直线上升”等等已经进入日常语言。它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的。“事业坐标”“人生轨迹”也已经是人们耳熟能详的词语。4. 数学的宏观和微观认识。宏观和微观是从物理学借用过来的,后来变成一种常识性的名词。以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别。初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态。高中的对应则是微观的分析。在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行。政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的。是否要从这样的观点考察函数呢?5. 数学和美学。“1/2+1/3=2/5 ?”是不是和谐美?二次方程的求根公式美不美?这涉及到美学观。三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上。欣赏艾舍尔(m.c.escher)的画、计算机画出的分形图,也是数学美的表现。总之,数学文化离不开数学史,但是不能仅限于数学史。当数学文化的魅力真正渗入教材、到达课堂、溶入教学时,数学就会更加平易近人,数学教学就会通过文化层面让学生进一步理解数学、喜欢数学、热爱数学。数学”名称的由来 古希腊人在数学中引进了名称,概念和自我思考,他们很早就开始猜测数学是如何产生的。虽然他们的猜测仅是匆匆记下,但他们几乎先占有了猜想这一思考领域。古希腊人随意记下的东西在世纪变成了大堆文章,而在世纪却变成了令人讨厌的陈辞滥调。在现存的资料中,希罗多德(,公元前年)是第一个开始猜想的人。他只谈论了几何学,他对一般的数学概念也许不熟悉,但对土地测量的准确意思很敏感。作为一个人类学家和一个社会历史学家,希罗多德指出,古希腊的几何来自古埃及,在古埃及,由于一年一度的洪水淹没土地,为了租税的目的,人们经常需要重新丈量土地;他还说:希腊人从巴比伦人那里学会了日晷仪的使用,以及将一天分成个时辰。希罗多德的这一发现,受到了肯定和赞扬。认为普通几何学有一个辉煌开端的推测是肤浅的。柏拉图关心数学的各个方面,在他那充满奇妙幻想的神话故事费德洛斯篇中,他说:故事发生在古埃及的洛克拉丁(区域),在那里住着一位老神仙,他的名字叫赛斯(),对于赛斯来说,朱鹭是神鸟,他在朱鹭的帮助下发明了数,计算、几何学和天文学,还有棋类游戏等。柏拉图常常充满了奇怪的幻想,原因是他不知道自己是否正亚里士多德最后终于用完全概念化的语言谈论数学了,即谈论统一的、有着自己发展目的的数学。在他的形而上学()第卷第章中,亚里士多德说:数学科学或数学艺术源于古埃及,因为在古埃及有一批祭司有空闲自觉地致力于数学研究。亚里士多德所说的是否是事实还值得怀疑,但这并不影响亚里士多德聪慧和敏锐的观察力。在亚里士多德的书中,提到古埃及仅仅只是为了解决关于以下问题的争论:存在为知识服务的知识,纯数学就是一个最佳的例子:知识的发展不是由于消费者购物和奢华的需要而产生的。亚里士多德这种“天真”的观点也许会遭到反对;但却驳不倒它,因为没有更令人信服的观点就整体来说,古希腊人企图创造两种“科学”的方法论,一种是实体论,而另一种是他们的数学。亚里士多德的逻辑方法大约是介于二者之间的,而亚里士多德自己认为,在一般的意义上讲他的方法无论如何只能是一种辅助方法。古希腊的实体论带有明显的巴门尼德的“存在”特征,也受到赫拉克利特“理性”的轻微影响,实体论的特征仅在以后的斯多葛派和其它希腊作品的翻译中才表现出来。数学作为一种有效的方法论远远地超越了实体论,但不知什么原因,数学的名字本身并不如“存在”和“理性”那样响亮和受到肯定。然而,数学名称的产生和出现,却反映了古希腊人某些富于创造的特性。下面我们将说明数学这一名词的来源。“数学”一词是来自希腊语,它意味着某种已学会或被理解的东西或“已获得的知识”,甚至意味着“可获的东西”,“可学会的东西”,即“通过学习可获得的知识”,数学名称的这些意思似乎和梵文中的同根词意思相同。甚至伟大的辞典编辑人利特雷(也是当时杰出的古典学者),在他编辑的法语字典(年)中也收入了“数学”一词。牛津英语字典没有参照梵文。公元世纪的拜占庭希腊字典“”中,引出了“物理学”、“几何学”和“算术”的词条,但没有直接列出“数学”词。“数学”一词从表示一般的知识到专门表示数学专业,经历一个较长的过程,仅在亚里士多德时代,而不是在柏拉图时代,这一过程才完成。数学名称的专有化不仅在于其意义深远,而在于当时古希腊只有“诗歌”一词的专有化才能与数学名称的专有化相媲美。“诗歌”原来的意思是“已经制造或完成的某些东西”,“诗歌”一词的专有化在柏拉图时代就完成了。而不知是什么原因辞典编辑或涉及名词专有化的知识问题从来没有提到诗歌,也没有提到诗歌与数学名称专有化之间奇特的相似性。但数学名称的专有化确实受到人们的注意。首先,亚里士多德提出,“数学”一词的专门化使用是源于毕达哥拉斯的想法,但没有任何资料表明对于起源于爱奥尼亚的自然哲学有类似的思考。其次在爱奥尼亚人中,只有泰勒斯(公元前?年)在“纯”数学方面的成就是可信的,因为除了第欧根尼拉尔修()简短提到外,这一可信性还有一个较迟的而直接的数学来源,即来源于普罗克洛斯()对欧几里得的评注:但这一可信性不是来源于亚里士多德,尽管他知道泰勒斯是一个“自然哲学家”;也不是来源于早期的希罗多德,尽管他知道塞利斯是一个政治、军事战术方面的“爱好者”,甚至还能预报日蚀。以上这些可能有助于解释为什么在柏拉图的体系中,几乎没有爱奥尼亚的成份。赫拉克利特(公元前?年)有一段名言:“万物都在运动中,物无常往”,“人们不可能两次落进同一条河里”。这段名言使柏拉图迷惑了,但赫拉克赖脱却没受到柏拉图给予巴门尼德那样的尊敬。巴门尼德的实体论,从方法论的角度讲,比起赫拉克赖脱的变化论,更是毕达哥拉斯数学的强有力的竞争对手。对于毕达哥拉斯学派来说,数学是一种“生活的方式”。事实上,从公元世纪的拉丁作家格利乌斯()和公元世纪的希腊哲学家波菲利()以及公元世纪的希腊哲学家扬布利科斯()的某些证词中看出,似乎毕达哥拉斯学派对于成年人有一个“一般的学位课程”,其中有正式登记者和临时登记者。临时成员称为“旁听者”,正式成员称为“数学家”。这里“数学家”仅仅表示一类成员,而并不是他们精通数学。毕达哥拉斯学派的精神经久不衰。对于那些被阿基米德神奇的发明所深深吸引的人来说,阿基米德是唯一的独特的数学家,从理论的地位讲,牛顿是一个数学家,尽管他也是半个物理学家,一般公众和新闻记者宁愿把爱因斯坦看作数学家,尽管他完全是物理学家。当罗吉尔培根(,年)通过提倡接近科学的“实体论”,向他所在世纪提出挑战时,他正将科学放进了一个数学的大框架,尽管他在数学上的造诣是有限的,当笛卡儿(,年)还很年轻时就决心有所创新,于是他确定了“数学万能论”的名称和概念。然后莱布尼茨引用了非常类似的概念,并将其变成了以后产生的“符号”逻辑的基础,而世纪的“符号”逻辑变成了热门的数理逻辑。在世纪,数学史的先驱作家蒙托克莱()说,他已听说了关于古希腊人首先称数学为“一般知识”,这一事实有两种解释:一种解释是,数学本身优于其它知识领域;而另一种解释是,作为一般知识性的学科,数学在修辞学,辩证法,语法和伦理学等等之前就结构完整了。蒙托克莱接受了第二种解释。他不同意第一种解释,因为在普罗克洛斯关于欧几里得的评注中,或在任何古代资料中,都没有发现适合这种解释的确证。然而世纪的语源学家却倾向于第一种解释,而世纪的古典学者却又偏向第二种解释。但我们发现这两种解释并不矛盾,即很早就有了数学且数学的优越性是无与伦比的。中学数学常用的解题方法 数学的解题方法是随着对数学对象的研究的深入而发展起来的。教师钻研习题、精通解题方法,可以促进教师进一步熟练地掌握中学数学教材,练好解题的基本功,提高解题技巧,积累教学资料,提高业务水平和教学能力。 下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于r,a0)根的判别,=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论