




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ADF检验中滞后长度的选择 基于ARIMA(0,1,q)过程的模拟证据摘要】在进行ADF检验时如何确定一个最优的滞后长度一直是研究者们关注的问题。最近的研究表明,不同的滞后长度选择方法对ADF检验的统计推断影响很大。本文在已有研究的基础上,模拟了更为一般的ARIMA(0,1,q)过程,分析了在不同的数据生成过程、检验式以及样本容量下,各种滞后长度选择方法对ADF检验功效和实际检验水平的影响,最后认为修正的信息准则通常具有较合理的实际检验水平,而从一般到特殊法具有更为稳健的ADF检验性质。 关键词 ADF检验 滞后长度 信息准则 修正的信息准则 从一般到特殊法 Abstract: The optimal lag length in estimating Augmented Dickey-Fuller statistics have been concentrated on for years. Previous research indicated that different leg length selection models affect a lot on the statistical inference of ADF test. Based on all the researches available, this paper simulates a more general ARIMA(0,1,q) process and analyzes the influence of lag length selection criterions to the size and power of the ADF test with different data generating processes, ADF regressions, and sample sizes. Finally, it is proved that the Modified Information Criteria always shows a more proper size and the General to Special Criteria has more robust properties in ADF test. Keywords: ADF test Lag Length Information Criteria Modified Information Criteria General to Specific 一、引 言 随着时间序列非平稳问题的提出,单位根检验目前已经成为宏观数据建模前首先要进行的工作。为此,Dickey和Fuller(1979, 1981)1提出了著名的ADF检验,并推导了当时间序列yt是ARIMA(p,1,0)过程且满足检验式中滞后差分项长度k p时ADF检验统计量的极限分布。然而,在实际运用ADF检验时,真实的p是不知道的,因此需要研究者自己确定k。总的来说滞后长度的选择方法主要分为两类。一类是经验法(rule of thumb)。这种方法是研究者任意选择k,或将k表示为样本容量的函数。另外一类就是根据数据来选择k。这种方法主要有Akaike(1973)信息准则(Akaike Information Criteria,以下简写为AIC)、Schwarz(1978)信息准则(Schwarz Information Criteria,以下简写为SIC)、Hannan和Quinn(1979)信息准则(Hannan and Quinn Information Criteria,以下简写为HQIC)、从一般到特殊法则(General to Special Criteria,以下简写为GSC)、从特殊到一般法则(Special to General Criteria,以下简写为SGC)等。此外,在后来的研究中,Weber(1998)又提出了非自相关法则(No Autocorrelation Criteria),即从一个比较简化的模型开始,逐渐增加滞后差分项直到残差不能拒绝非自相关的原假设。2001年他又提出了一种考虑滞后长度k在特定区间kmin, kmax内的从特殊到一般法,该方法运用了一系列F检验,确定的最优滞后长度是使得比其大的直到kmax的所有滞后差分项对应参数的联合检验均不显著的最小的k。 然而很多学者都指出,ADF检验的结论对滞后长度k的选择非常敏感。Phillips和Perron(1988)模拟发现当真实数据生成过程为随机游走时,随着检验式中差分项滞后长度的增加,会导致ADF检验的功效和水平都降低。另外,Schwert(1989)、Agiakloglou和Newbold(1992)以及Harris(1992)等也指出不同的滞后长度选择方法对ADF检验的实际水平和功效有明显影响。这就引发了关于不同方法确定滞后长度是否以及如何影响ADF统计量极限分布的讨论。 其实早在ADF检验提出不久,Said和Dickey(1984)就证明了对阶数未知的ARMA过程检验单位根时,只要检验式中的滞后长度k满足一定的上界条件和下界条件,仍可以用ADF统计量来检验原过程中单位根的存在。紧接着,Lewis和Reinsel(1985)提出了一个与Said和Dickey(1984)下界条件等价的条件,并证明当满足该下界条件和Said和Dickey(1984)上界条件时检验式中滞后差分项的参数估计量具有一致性和渐近正态性。Hannan和Deistler(1988)2则提出了各信息准则确定一个平稳可逆的ARMA过程滞后长度的若干性质。 随后,Ng和Perron(1995)明确解答了哪些滞后长度选择方法满足这些上界与下界条件,以及运用它们确定滞后长度如何影响ADF检验统计量极限分布的问题。首先,该文讨论了检验式中滞后长度k不满足Said和Dickey(1984)或Lewis和Reinsel(1985)下界条件对ADF检验统计量极限分布的影响。他们认为这时仍渐近服从标准DF分布,同时滞后差分项的参数估计量仍具有一致性,但其向真值收敛的速度要小于 (T为样本容量,下同)。接着,Ng和Perron(1995)将滞后长度的选择准则与上述极限分布条件相比较,证明了在ADF检验中,利用各信息准则确定的滞后长度时不满足下界条件,但统计量仍服从标准DF分布。而当运用GSC时,如果我们确定的滞后长度最大值满足上界条件和Lewis和Reinsel(1985)下界条件,则滞后差分项的参数估计量具有一致性和渐近正态性,可以用t统计量、F统计量和Wald统计量检验其显著性。最后通过模拟重点讨论了当数据生成过程为ARIMA(0,1,1)时各方法确定的滞后长度以及对ADF检验功效和实际检验水平的影响。 类似地,Hall(1994)还从一个纯自相关过程入手,给出了当真实数据生成过程是一个ARIMA(p,1,0)过程时,ADF统计量服从DF分布应满足的假设条件。并讨论了不同滞后长度选择准则对ADF统计量极限分布的影响。他认为当运用AIC、SIC、HQIC以及GSC确定滞后长度时,满足上述条件,因此ADF统计量仍服从标准DF分布,而运用SGC时不能满足上述条件,从而ADF统计量的极限分布发生变化,不再服从标准DF分布。最后对于不同的ARIMA(p,1,0)过程,模拟了基于各种准则的ADF检验功效与实际检验水平。 此外,随着研究的不断深入,学者们又从一些新的角度对滞后长度选择的问题进行了探讨。比如Ng和Perron(2001)将Elliott、Rothenberg、和Stock(1996)3以及Dufour和King(1991)4提出的局部GLS退势法与Perron和Ng(1996)5提出的修正的单位根检验统计量相结合,提出了一系列MGLS统计量来检验单位根。在这种检验中,他们首度运用了一系列修正的信息准则(Modified Information Criteria,以下简写为MIC)来确定滞后长度,并给出了其局部渐近性质。MIC与一般信息准则的本质区别就在于它考虑到检验式中一阶滞后项参数估计量的偏差与滞后长度是高度相关的,进而通过加入一个包含一阶滞后项参数估计量的修正项对信息准则拟和不足的问题进行了一定的校正。Ng和Perron(2005)又重点探讨了在运用各种信息准则时,可用观测值个数(即调整的样本容量)、计算均方误差时的自由度、以及计算惩罚因子(penalty factor)时使用的观测值个数对滞后长度选择的影响。结果表明在有限样本下AIC与SIC选择的滞后长度对上述三个因素非常敏感。 综上所述,已有的研究主要集中在对ARIMA(p,1,0)和ARIMA(0,1,1) 过程进行单位根检验时,各方法确定的滞后长度以及相应的单位根检验的功效与实际水平上。而对ARIMA(0,1,q)即含有单位根的高阶移动平均过程的研究则比较少。另外,也鲜见MIC与其他方法比较的相关研究。针对这些问题,本文对Hall(1994),Ng和Perron(1995, 2001)的方法和结论进行扩展,在接下来的部分中用蒙特卡罗模拟的方法在有限样本下研究一个更一般的ARIMA(0,1,q)过程,对模拟结果中不同滞后期选择方法尤其是MIC的优劣进行比较,以期找到一种能应用在更一般的数据生成过程中,并使ADF检验推断更真实可靠的滞后长度选择方法。最后一部分是对全文的总结,并提出了一些滞后项选择及ADF检验中需要注意的问题。 二、模拟结果 根据Hall(1994),Ng和Perron(1995, 2001)文章中的结论,运用信息准则和GSC确定滞后长度时,ADF统计量仍服从标准DF分布。其中运用GSC时滞后差分项以的速度收敛于真值,从而使ADF检验有一个更优的有限样本性质。MIC是对通常信息准则的修正。因此本文选取AIC、SIC、MAIC、MSIC以及GSC五种方法来确定ADF检验式中的滞后长度。重点考察小样本下当误差项为高阶移动平均过程时基于各准则的ADF检验功效和实际检验水平的特征,以及MIC与其他方法相比对ADF检验统计推断的影响和滞后长度选择的异同。各方法确定滞后长度的原理如下: 首先,AIC与SIC具有相似的形式,选择的滞后长度k满足使(1)式的值最小。其中AIC准则中CT=2,SIC准则中CT=logT,表示估计方程的误差均方,它往往随着滞后长度的增加而下降。是ADF检验式中的解释变量个数,它等于滞后差分项个数k加上常数项以及时间趋势项,会随滞后长度的增加而变大,代表了对过度拟和的惩罚。因此选择k使(1)最小意味着在较少参数和较小的残差平方和之间做出选择。 (1) 另外,Ng和Perron(2001)提出了一系列的修正的信息准则即MIC。其选择的滞后长度是使得目标方程(2)的值最小的k,依据CT的表达式不同MIC又分别称为MAIC与MSIC。 (2) 它与一般的信息准则的不同就是增加了一个修正因子,其表达式为: (3) 其中是ADF检验式中一阶滞后项的参数估计量。Ng和Perron(2001)证明会随着ADF检验式中滞后差分项个数k的增加而减小,尤其当数据生成过程的移动平均部分含有负根时,这种减小更加明显,因此可以有效地校正一般信息准则拟和不足的问题。 GSC则是在ADF检验式中选取r=j+m个滞后差分项,并通过对最后m个参数 (i=1, , m)的显著性进行联合检验来完成的,其中j0, jmax。该检验的Wald形式为: (4) 其中 (5) (6) 它代表所有解释变量的方差协方差矩阵,是中右下方mm阶的块矩阵。 代表该检验式回归函数的误差均方,其中代表回归式的残差。 检验规则为:j从最大的取值jmax开始,依次降低其取值直到(4)式表示的统计量显著。该统计量服从自由度为m的2分布。基于显著性水平,滞后长度k的取值为 k = j +1,当是统计量所有值中第一个大于临界值的值时。 k = 0,当统计量所有值均小于临界值时。 为了考察误差项为高阶移动平均过程时ADF检验中滞后长度的选择问题,我们对形如(7)式的数据生成过程共10种情况运用上述五种方法选择滞后长度继而进行ADF检验。 (7) 其中L是滞后因子,ut是白噪声,y0=0。 10种数据生成过程如下:1=0.8, 2=0.0, 3=0.0, 4=0.0; 1=0.5, 2=0.0, 3=0.0, 4=0.0; 1=-0.5, 2=0.0, 3=0.0, 4=0.0; 1=-0.8, 2=0.0, 3=0.0, 4=0.0; 1=0.8, 2=0.5, 3=0.0, 4=0.0; 1=0.5, 2=0.3, 3=0.0, 4=0.0; 1=-0.5, 2=0.3, 3=0.0, 4=0.0; 1=-0.8, 2=0.5, 3=0.0, 4=0.0; 1=-0.8, 2=-0.5, 3=0.0, 4=0.0; 1=0.5, 2=0.3, 3=0.2, 4=0.1。这10种情况描述了误差项移动平均部分的根在个数、大小、正负等方面的不同情形。 ADF检验的原假设H0: = 1;备择假设H1: 1。ADF检验式如下: (a) (b) 为考察不同情形下ADF检验的功效和实际检验水平,我们对每种数据生成过程分别取=1、0.95、0.85,用Rats6.2模拟样本容量T=100时基于两种检验式(a)和(b)的上述检验过程以及T=250时基于检验式(a)的上述检验过程。对每种情况重复10000次,计算ADF统计量小于临界值的概率,同时记录每次选择的滞后长度,最后计算滞后长度的均值和标准差。当真实数据生成过程是单位根过程即 = 1时,ADF统计量小于临界值的概率就是犯弃真错误的概率,即实际检验水平。而当真实数据生成过程为平稳过程即 1时,ADF统计量小于临界值的概率则是1-犯取伪错误的概率,即检验功效。这里运用GSC确定滞后长度时取m=1,即计算单个参数的t统计量,显著性水平取5%,各准则的最大滞后长度取kmax = 206。 根据模拟结果,我们重点比较了各方法在滞后长度选择及其相应的ADF检验功效和实际检验水平方面的异同,并考察了误差项为高阶移动平均时的各种数据生成过程、不同检验式以及样本容量对滞后长度选择及ADF检验统计推断的影响,从而对Hall(1994),Ng和Perron(1995)的结论做了一定的补充。 1.不同准则的比较 滞后长度及其标准差方面(见表1、3、5),总得来说,GSC、AIC与MAIC选择的滞后长度通常要高于SIC与MSIC,前者往往倾向于过度拟和。具体来说,当DGP中移动平均部分的根为正时,AIC与MAIC、SIC与MSIC选择的平均滞后长度很接近。当移动平均部分含有负根时,修正的信息准则往往比相应的原准则选择更大的平均滞后长度,并且这一差距随着根更接近于-1或负根个数增加而更加明显,同时滞后长度的标准差也随之增加。 表1 滞后长度的均值和标准差检验式(a) T=100 ARIMA(p,d,q) 1 2 3 4 AIC SIC MAIC MSIC GSC 1.0 ARIMA(0,1,1) 0.8 0.0 0.0 0.0 5.54 3.06 2.79 1.18 5.29 2.94 2.75 1.23 8.14 5.38 1.0 ARIMA(0,1,1) 0.5 0.0 0.0 0.0 2.99 2.72 1.46 0.71 2.81 2.44 1.48 0.82 6.61 6.18 1.0 ARIMA(0,1,1) -0.5 0.0 0.0 0.0 2.85 2.68 1.34 0.75 3.01 2.55 1.77 1.08 6.71 6.30 1.0 ARIMA(0,1,1) -0.8 0.0 0.0 0.0 4.62 3.28 2.03 1.34 6.39 3.60 4.50 2.56 7.65 5.73 1.0 ARIMA(0,1,2) 0.8 0.5 0.0 0.0 7.39 3.14 4.34 1.30 7.06 2.97 4.26 1.41 9.20 4.77 1.0 ARIMA(0,1,2) 0.5 0.3 0.0 0.0 3.79 2.70 2.18 0.81 3.62 2.41 2.16 0.85 7.05 5.89 1.0 ARIMA(0,1,2) -0.5 0.3 0.0 0.0 2.15 2.78 0.44 0.80 2.39 2.62 0.96 1.17 6.25 6.53 1.0 ARIMA(0,1,2) -0.8 0.5 0.0 0.0 3.96 3.19 1.31 1.33 5.43 3.39 3.47 2.15 7.29 5.87 1.0 ARIMA(0,1,2) -0.8 -0.5 0.0 0.0 6.38 3.56 3.22 2.02 8.47 3.75 6.66 3.38 8.71 5.14 1.0 ARIMA(0,1,4) 0.5 0.3 0.2 0.1 5.21 3.63 1.63 1.32 4.91 3.43 1.82 1.44 8.30 5.44 0.95 ARIMA(1,0,1) 0.8 0.0 0.0 0.0 5.57 3.14 2.77 1.17 5.33 3.17 2.76 1.37 8.09 5.36 0.95 ARIMA(1,0,1) 0.5 0.0 0.0 0.0 2.87 2.57 1.44 0.73 3.06 2.75 1.51 1.08 6.59 6.20 0.95 ARIMA(1,0,1) -0.5 0.0 0.0 0.0 2.55 2.61 1.08 0.76 3.94 3.20 2.68 1.69 6.29 6.31 0.95 ARIMA(1,0,1) -0.8 0.0 0.0 0.0 2.80 3.11 0.75 1.06 8.54 4.54 7.17 3.82 6.74 6.29 0.95 ARIMA(1,0,2) 0.8 0.5 0.0 0.0 7.31 3.09 4.32 1.32 7.11 3.23 4.22 1.62 9.10 4.80 0.95 ARIMA(1,0,2) 0.5 0.3 0.0 0.0 3.74 2.55 2.18 0.85 3.78 2.83 2.24 0.96 7.08 5.95 0.95 ARIMA(1,0,2) -0.5 0.3 0.0 0.0 1.76 2.58 0.27 0.67 3.24 3.13 1.92 1.57 6.11 6.66 0.95 ARIMA(1,0,2) -0.8 0.5 0.0 0.0 2.72 3.03 0.57 1.01 6.96 4.56 5.22 3.39 6.56 6.21 0.95 ARIMA(1,0,2) -0.8 -0.5 0.0 0.0 3.22 3.69 0.56 1.27 11.11 4.96 10.38 4.77 7.56 5.93 0.95 ARIMA(1,0,4) 0.5 0.3 0.2 0.1 5.06 3.53 1.61 1.31 5.14 3.58 2.41 1.72 8.17 5.44 0.85 ARIMA(1,0,1) 0.8 0.0 0.0 0.0 5.45 3.03 2.73 1.18 5.62 3.96 2.73 1.96 8.00 5.36 0.85 ARIMA(1,0,1) 0.5 0.0 0.0 0.0 2.83 2.59 1.36 0.72 3.61 3.57 1.15 1.66 6.55 6.19 0.85 ARIMA(1,0,1) -0.5 0.0 0.0 0.0 2.02 2.54 0.58 0.73 5.81 4.57 4.41 3.29 6.17 6.55 0.85 ARIMA(1,0,1) -0.8 0.0 0.0 0.0 1.10 2.49 0.08 0.35 8.72 6.24 8.03 6.06 5.74 6.76 0.85 ARIMA(1,0,2) 0.8 0.5 0.0 0.0 7.25 3.03 4.28 1.30 7.36 3.86 4.07 2.21 9.08 4.75 0.85 ARIMA(1,0,2) 0.5 0.3 0.0 0.0 3.75 2.64 2.11 0.82 4.17 3.61 2.32 1.61 7.01 5.94 0.85 ARIMA(1,0,2) -0.5 0.3 0.0 0.0 1.36 2.61 0.12 0.46 4.73 4.35 3.25 2.92 5.93 6.74 0.85 ARIMA(1,0,2) -0.8 0.5 0.0 0.0 2.02 2.79 0.42 0.71 6.61 6.25 5.40 5.65 6.07 6.57 0.85 ARIMA(1,0,2) -0.8 -0.5 0.0 0.0 1.63 2.61 0.32 0.58 6.90 7.46 6.75 7.37 6.25 6.63 0.85 ARIMA(1,0,4) 0.5 0.3 0.2 0.1 4.98 3.52 1.54 1.27 5.56 4.04 2.84 2.22 8.14 5.44 注:表中所列和分别代表模拟10000次时各准则确定的(1-L)yt滞后长度的均值及其标准差。对同一数据生成过程而言,基于各种信息准则的实际检验水平由小到大分别为:MAIC、MSIC、AIC、SIC。尤其是当DGP的移动平均部分含有较大负根时,AIC与SIC的检验尺度扭曲非常严重,在样本容量为100时甚至达到了50%以上(见表2)。而这时MAIC犯第一类错误的概率都能保持在10%以下。此时基于GSC的检验尺度扭曲要小于一般的信息准则,但仍大于修正的信息准则,在其他情况下通常介于AIC与SIC之间。从检验功效来看,基于SIC的检验功效最高,在移动平均部分中含有较大负根时其检验功效非常接近于1。其次是基于AIC与GSC的检验功效,且前者的略高。基于修正的信息准则的检验功效最低,尤其是在样本容量为100时更加明显(见表2)。 表2 ADF检验的功效和实际检验水平检验式(a) T=100 ARIMA(p,d,q) 1 2 3 4 AIC SIC MAIC MSIC GSC 1.0 ARIMA(0,1,1) 0.8 0.0 0.0 0.0 0.0566 0.0569 0.0239 0.0211 0.0596 1.0 ARIMA(0,1,1) 0.5 0.0 0.0 0.0 0.0611 0.0674 0.0313 0.0248 0.0629 1.0 ARIMA(0,1,1) -0.5 0.0 0.0 0.0 0.1008 0.1580 0.0516 0.0676 0.0981 1.0 ARIMA(0,1,1) -0.8 0.0 0.0 0.0 0.2436 0.4257 0.0605 0.0929 0.1856 1.0 ARIMA(0,1,2) 0.8 0.5 0.0 0.0 0.0604 0.0531 0.0218 0.0175 0.0594 1.0 ARIMA(0,1,2) 0.5 0.3 0.0 0.0 0.0586 0.0590 0.0275 0.0241 0.0604 1.0 ARIMA(0,1,2) -0.5 0.3 0.0 0.0 0.1187 0.1863 0.0576 0.0815 0.1043 1.0 ARIMA(0,1,2) -0.8 0.5 0.0 0.0 0.2558 0.4599 0.0885 0.1378 0.1899 1.0 ARIMA(0,1,2) -0.8 -0.5 0.0 0.0 0.1939 0.3480 0.0373 0.0407 0.1438 1.0 ARIMA(0,1,4) 0.5 0.3 0.2 0.1 0.0665 0.0859 0.0253 0.0391 0.0587 0.95 ARIMA(1,0,1) 0.8 0.0 0.0 0.0 0.2668 0.2911 0.1367 0.1240 0.2593 0.95 ARIMA(1,0,1) 0.5 0.0 0.0 0.0 0.3005 0.3619 0.1877 0.1448 0.2930 0.95 ARIMA(1,0,1) -0.5 0.0 0.0 0.0 0.5000 0.6536 0.2728 0.3463 0.4383 0.95 ARIMA(1,0,1) -0.8 0.0 0.0 0.0 0.7933 0.9547 0.3115 0.3824 0.6256 0.95 ARIMA(1,0,2) 0.8 0.5 0.0 0.0 0.2454 0.2687 0.1097 0.0910 0.2485 0.95 ARIMA(1,0,2) 0.5 0.3 0.0 0.0 0.2787 0.2861 0.1467 0.1453 0.2535 0.95 ARIMA(1,0,2) -0.5 0.3 0.0 0.0 0.5321 0.7436 0.3024 0.4025 0.4388 0.95 ARIMA(1,0,2) -0.8 0.5 0.0 0.0 0.7758 0.9536 0.3680 0.4797 0.6081 0.95 ARIMA(1,0,2) -0.8 -0.5 0.0 0.0 0.8408 0.9769 0.3570 0.3809 0.6770 0.95 ARIMA(1,0,4) 0.5 0.3 0.2 0.1 0.2791 0.3917 0.1399 0.1938 0.2445 0.85 ARIMA(1,0,1) 0.8 0.0 0.0 0.0 0.6912 0.7664 0.4479 0.5570 0.5993 0.85 ARIMA(1,0,1) 0.5 0.0 0.0 0.0 0.8031 0.8715 0.6137 0.6142 0.6787 0.85 ARIMA(1,0,1) -0.5 0.0 0.0 0.0 0.9308 0.9875 0.6248 0.7227 0.7701 0.85 ARIMA(1,0,1) -0.8 0.0 0.0 0.0 0.9847 0.9998 0.5978 0.6308 0.8492 0.85 ARIMA(1,0,2) 0.8 0.5 0.0 0.0 0.5836 0.6846 0.3394 0.4195 0.5292 0.85 ARIMA(1,0,2) 0.5 0.3 0.0 0.0 0.7371 0.7730 0.5239 0.5962 0.6230 0.85 ARIMA(1,0,2) -0.5 0.3 0.0 0.0 0.9333 0.9912 0.6485 0.7690 0.7563 0.85 ARIMA(1,0,2) -0.8 0.5 0.0 0.0 0.9767 0.9999 0.6594 0.7188 0.8403 0.85 ARIMA(1,0,2) -0.8 -0.5 0.0 0.0 0.9889 1.0000 0.7004 0.7062 0.8886 0.85 ARIMA(1,0,4) 0.5 0.3 0.2 0.1 0.6566 0.8509 0.3887 0.4404 0.5444 注:表中所列数值为模拟10000次时按照各种准则得到的ADF统计量小于Fuller(1976, 表8.5.2, 第373页)5%显著性水平下临界值的概率。 2.不同DGP的影响 滞后长度方面,当数据生成过程 (Data Generating Procedure, 以下简写为DGP)中移动平均部分根的绝对值向1趋近或根的个数增加时,各准则选择的滞后长度都会增加,标准差也相应增加。另外,当数据生成过程的移动平均部分相同时,是否含有单位根对平均滞后长度的选择影响不大。同时,基于AIC、SIC与GSC得到的滞后长度标准差也很稳健,而基于MIC的滞后长度标准差随着数据生成过程逐渐平稳有增加的趋势(见表1、3、5)。 检验功效方面,当DGP的移动平均部分含有负根时,基于各准则的ADF检验功效通常会大于只含有正根的情况。大多数情况下,原过程移动平均部分中正根个数的增加会使检验功效降低,而负根个数的增加会使检验功效增加。当根的个数相同时,绝对值较大的正根会降低检验功效,而绝对值较大的负根反而会增加检验功效。这一点在样本容量为250时表现的更为明显(见表6)。 表3 滞后长度的均值和标准差检验式(b) T=100 ARIMA(p,d,q) 1 2 3 4 AIC SIC MAIC MSIC GSC 1.0 ARIMA(0,1,1) 0.8 0.0 0.0 0.0 5.69 3.30 2.81 1.20 5.04 4.06 2.63 2.59 8.37 5.48 1.0 ARIMA(0,1,1) 0.5 0.0 0.0 0.0 3.08 2.94 1.43 0.73 3.15 3.68 1.53 2.39 7.09 6.36 1.0 ARIMA(0,1,1) -0.5 0.0 0.0 0.0 2.67 2.96 1.08 0.76 4.78 4.07 3.75 3.20 6.73 6.45 1.0 ARIMA(0,1,1) -0.8 0.0 0.0 0.0 3.12 3.30 0.92 1.17 8.85 4.78 7.92 4.41 6.88 6.19 1.0 ARIMA(0,1,2) 0.8 0.5 0.0 0.0 7.57 3.33 4.35 1.33 6.54 4.08 3.89 2.80 9.25 4.79 1.0 ARIMA(0,1,2) 0.5 0.3 0.0 0.0 4.00 2.94 2.19 0.85 3.92 3.84 2.20 2.37 7.37 5.99 1.0 ARIMA(0,1,2) -0.5 0.3 0.0 0.0 1.89 2.92 0.28 0.67 4.21 4.08 3.12 3.20 6.31 6.67 1.0 ARIMA(0,1,2) -0.8 0.5 0.0 0.0 2.91 3.17 0.65 1.06 7.64 4.87 6.49 4.38 6.89 6.26 1.0 ARIMA(0,1,2) -0.8 -0.5 0.0 0.0 3.22 3.76 0.71 1.43 11.05 5.43 0.64 5.32 7.32 6.08 1.0 ARIMA(0,1,4) 0.5 0.3 0.2 0.1 5.30 3.76 1.59 1.32 4.86 4.30 2.44 2.78 8.57 5.49 0.95 ARIMA(1,0,1) 0.8 0.0 0.0 0.0 5.69 3.27 2.78 1.91 4.90 3.58 2.52 2.08 8.31 5.38 0.95 ARIMA(1,0,1) 0.5 0.0 0.0 0.0 3.05 2.90 1.39 0.71 2.98 3.23 1.22 1.72 6.82 6.32 0.95 ARIMA(1,0,1) -0.5 0.0 0.0 0.0 2.30 2.74 0.85 0.73 4.44 3.70 3.55 2.74 6.52 6.54 0.95 ARIMA(1,0,1) -0.8 0.0 0.0 0.0 1.94 2.91 0.38 0.79 8.20 4.95 7.25 4.49 6.34 6.57 0.95 ARIMA(1,0,2) 0.8 0.5 0.0 0.0 7.49 3.27 4.31 1.33 6.48 3.60 3.86 2.42 9.22 4.77 0.95 ARIMA(1,0,2) 0.5 0.3 0.0 0.0 3.91 2.78 2.16 0.88 3.64 3.20 2.14 1.82 7.21 5.94 0.95 ARIMA(1,0,2) -0.5 0.3 0.0 0.0 1.58 2.82 0.18 0.56 3.82 3.75 2.81 2.71 6.17 6.79 0.95 ARIMA(1,0,2) -0.8 0.5 0.0 0.0 2.20 2.75 0.43 0.83 6.44 4.95 5.31 4.33 6.27 6.46 0.95 ARIMA(1,0,2) -0.8 -0.5 0.0 0.0 2.14 3.30 0.25 0.72 9.50 6.06 9.16 5.93 6.94 6.28 0.95 ARIMA(1,0,4) 0.5 0.3 0.2 0.1 5.23 3.80 1.56 1.32 4.73 3.72 2.42 2.34 8.52 5.54 0.85 ARIMA(1,0,1) 0.8 0.0 0.0 0.0 5.57 3.21 2.71 1.21 4.85 3.80 2.29 2.30 8.15 5.40 0.85 ARIMA(1,0,1) 0.5 0.0 0.0 0.0 2.91 2.79 1.33 0.70 3.11 3.47 0.89 1.80 6.65 6.26 0.85 ARIMA(1,0,1) -0.5 0.0 0.0 0.0 1.87 2.80 0.45 0.66 5.35 4.49 4.34 3.59 6.24 6.71 0.85 ARIMA(1,0,1) -0.8 0.0 0.0 0.0 1.07 2.56 0.06 0.31 6.50 5.92 6.14 5.68 5.97 6.89 0.85 ARIMA(1,0,2) 0.8 0.5 0.0 0.0 7.37 3.22 4.27 1.31 6.39 3.82 3.69 2.56 9.13 4.79 0.85 ARIMA(1,0,2) 0.5 0.3 0.0 0.0 3.84 2.80 2.10 0.87 3.86 3.54 2.00 1.97 7.09 5.91 0.85 ARIMA(1,0,2) -0.5 0.3 0.0 0.0 1.30 2.74 0.09 0.41 4.25 4.26 3.16 3.15 6.11 6.83 0.85 ARIMA(1,0,2) -0.8 0.5 0.0 0.0 2.00 2.76 0.44 0.67 4.69 5.69 3.65 4.98 6.17 6.64 0.85 ARIMA(1,0,2) -0.8 -0.5 0.0 0.0 1.77 2.73 0.38 0.62 4.40 6.60 4.18 6.40 6.24 6.69 0.85 ARIMA(1,0,4) 0.5 0.3 0.2 0.1 5.09 3.72 1.52 1.28 4.82 3.90 2.23 2.42 8.35 5.46 注:表中所列和分别代表模拟10000次时各准则确定的(1-L)yt滞后长度的均值及其标准差。 表4 ADF检验的功效和实际检验水平检验式(b) T=100 ARIMA(p,d,q) 1 2 3 4 AIC SIC MAIC MSIC GSC 1.0 ARIMA(0,1,1) 0.8 0.0 0.0 0.0 0.0683 0.0713 0.0215 0.0230 0.0732 1.0 ARIMA(0,1,1) 0.5 0.0 0.0 0.0 0.0717 0.0667 0.0208 0.0194 0.0811 1.0 ARIMA(0,1,1) -0.5 0.0 0.0 0.0 0.1557 0.2455 0.0376 0.0478 0.1218 1.0 ARIMA(0,1,1) -0.8 0.0 0.0 0.0 0.4732 0.7289 0.0860 0.0911 0.3232 1.0 ARIMA(0,1,2) 0.8 0.5 0.0 0.0 0.0713 0.0721 0.0197 0.0238 0.0758 1.0 ARIMA(0,1,2) 0.5 0.3 0.0 0.0 0.0655 0.0702 0.0225 0.0239 0.0744 1.0 ARIMA(0,1,2) -0.5 0.3 0.0 0.0 0.1734 0.2349 0.0453 0.0531 0.1355 1.0 ARIMA(0,1,2) -0.8 0.5 0.0 0.0 0.4325 0.7176 0.1078 0.1201 0.2823 1.0 ARIMA(0,1,2) -0.8 -0.5 0.0 0.0 0.6082 0.8692 0.1187 0.1162 0.3691 1.0 ARIMA(0,1,4) 0.5 0.3 0.2 0.1 0.0809 0.1010 0.0340 0.0346 0.0807 0.95 ARIMA(1,0,1) 0.8 0.0 0.0 0.0 0.1451 0.1560 0.0180 0.0079 0.1550 0.95 ARIMA(1,0,1) 0.5 0.0 0.0 0.0 0.1567 0.1886 0.0266 0.0067 0.1758 0.95 ARIMA(1,0,1) -0.5 0.0 0.0 0.0 0.3566 0.5263 0.0936 0.1033 0.2971 0.95 ARIMA(1,0,1) -0.8 0.0 0.0 0.0 0.7728 0.9476 0.2001 0.2215 0.5420 0.95 ARIMA(1,0,2) 0.8 0.5 0.0 0.0 0.1279 0.1517 0.0146 0.0065 0.1453 0.95 ARIMA(1,0,2) 0.5 0.3 0.0 0.0 0.1402 0.1530 0.0203 0.0102 0.1460 0.95 ARIMA(1,0,2) -0.5 0.3 0.0 0.0 0.4159 0.5712 0.1123 0.1332 0.3281 0.95 ARIMA(1,0,2) -0.8 0.5 0.0 0.0 0.7185 0.9253 0.2600 0.2989 0.7400 0.95 ARIMA(1,0,2) -0.8 -0.5 0.0 0.0 0.8172 0.9812 0.2599 0.2612 0.5068 0.95 ARIMA(1,0,4) 0.5 0.3 0.2 0.1 0.1633 0.2137 0.0290 0.0191 0.1404 0.85 ARIMA(1,0,1) 0.8 0.0 0.0 0.0 0.3684 0.4516 0.1061 0.0663 0.3430 0.85 ARIMA(1,0,1) 0.5 0.0 0.0 0.0 0.4848 0.5911 0.1435 0.0782 0.4354 0.85 ARIMA(1,0,1) -0.5 0.0 0.0 0.0 0.7934 0.9352 0.3420 0.3933 0.6109 0.85 ARIMA(1,0,1) -0.8 0.0 0.0 0.0 0.9697 0.9993 0.5447 0.5616 0.7438 0.85 ARIMA(1,0,2) 0.8 0.5 0.0 0.0 0.2965 0.3920 0.0589 0.0499 0.2995 0.85 ARIMA(1,0,2) 0.5 0.3 0.0 0.0 0.4015 0.4425 0.1305 0.0563 0.3571 0.85 ARIMA(1,0,2) -0.5 0.3 0.0 0.0 0.8176 0.9627 0.3786 0.4273 0.6134 0.85 ARIMA(1,0,2) -0.8 0.5 0.0 0.0 0.9454 0.9978 0.6149 0.6812 0.5055 0.85 ARIMA(1,0,2) -0.8 -0.5 0.0 0.0 0.9761 0.9998 0.7112 0.7192 0.7704 0.85 ARIMA(1,0,4) 0.5 0.3 0.2 0.1 0.3714 0.5606 0.1180 0.0473 0.3048 注:表中所列数值为模拟10000次时按照各种准则得到的ADF统计量小于Fuller(1976, 表8.5.2, 第373页)5%显著性水平下临界值的概率。 3.不同检验式的影响 在滞后长度的选择方面(见表1与表3),对于同一数据生成过程而言,SIC选择的滞后长度对不同检验式表现的非常稳健,而其他准则对应不同检验式选择的滞后长度往往不尽相同。用AIC选择滞后长度时,若移动平均部分的根为正,检验式(b)比检验式(a)更倾向于选择较大的平均滞后长度。而当移动平均部分的根为负时,情况恰好相反。对于MIC,当真实过程为单位根过程或非常接近单位根过程(=0.95)时,检验式(b)确定的平均滞后长度通常都较大,而当=0.85时,情况恰好相反。用GSC选择滞后长度时,大多数情况下基于检验式(b)选择的平均滞后长度较大。 在滞后长度的标准差方面,与用(a)检验时相比,检验式(b)中的标准差略大。其中当使用AIC、SIC与GSC时,二者很接近。当运用MIC时这种差距更加明显,但在=0.85时减小。这也说明了AIC、SIC与GSC确定的滞后长度相对稳健。 在检验功效方面,运用AIC,SIC与GSC确定滞后长度时,随着检验式中确定性成分的加入(如加入常数项),ADF检验的功效降低,检验尺度扭曲增加。而运用MIC确定滞后长度时,基于检验式(b)的检验功效降低更加明显,尤其是当真实数据生成过程很接近一个单位根过程(=0.95)时,ADF检验的功效甚至低于5%。但这时检验式(b)中犯弃真错误的概率也往往更小(见表2与表4)。 表5 滞后长度的均值和标准差 T=250 检验式(a) ARIMA(p,d,q) 1 2 3 4 AIC SIC MAIC MSIC GSC 1.0 ARIMA(0,1,1) 0.8 0.0 0.0 0.0 7.47 2.88 4.11 1.66 7.42 2.89 4.11 1.20 10.13 5.05 1.0 ARIMA(0,1,1) 0.5 0.0 0.0 0.0 3.63 2.43 1.96 0.70 3.55 2.39 1.97 0.69 7.96 6.28 1.0 ARIMA(0,1,1) -0.5 0.0 0.0 0.0 3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农产品无损检测技术在农产品产业高质量发展中的战略意义报告
- 2025年辽宁电工电路考试试题及答案
- 2025年听力图谱考试题及答案
- 数字信号处理考试试题及答案
- 2025年陕西省政府采购评审专家考试试题及答案
- 2025年小学容积拓展题目及答案
- 往年韩语考试题目及答案
- 甘肃省平凉市庄浪县2024-2025学年三年级上学期11月期中科学试题(含答案)
- 电气图形考试题及答案
- 机械装配设计题目及答案
- 建设工程项目协同作业方案
- GB/T 45972-2025装配式建筑用混凝土板材生产成套装备技术要求
- 变频及伺服应用技术(郭艳萍 钟立)全套教案课件
- 秋冬季安全知识培训
- 2024新译林版英语八年级上单词汉译英默写表(开学版)
- 美的集团工作流程体系
- 2025年中国冷冻治疗仪市场调查研究报告
- 新学期+心动力+课件-2025-2026学年高二上学期开学第一课主题班会
- (2025年标准)出资收车协议书
- 2025-2026学年外研版(三起)(2024)小学英语四年级上册教学计划及进度表
- 《家具与陈设设计》课件(共十章)
评论
0/150
提交评论