高中数学 第三章 统计案例 3.1 回归分析的基本思想及其初步应用课件 新人教A版选修23.ppt_第1页
高中数学 第三章 统计案例 3.1 回归分析的基本思想及其初步应用课件 新人教A版选修23.ppt_第2页
高中数学 第三章 统计案例 3.1 回归分析的基本思想及其初步应用课件 新人教A版选修23.ppt_第3页
高中数学 第三章 统计案例 3.1 回归分析的基本思想及其初步应用课件 新人教A版选修23.ppt_第4页
高中数学 第三章 统计案例 3.1 回归分析的基本思想及其初步应用课件 新人教A版选修23.ppt_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3 1回归分析的基本思想及其初步应用 1 了解回归分析的基本思想 会对两个变量进行回归分析 会求两个具有线性相关关系的变量的回归直线方程 并用回归直线方程进行预报 2 了解最小二乘法的思想方法 理解回归方程与一般函数的区别与联系 3 通过典型案例的分析 了解回归分析的初步应用 相关检验 1 2 3 4 1 2 3 4 知识拓展1 当r 0时 表明两个变量正相关 当r 0时 表明两个变量负相关 2 r 越接近于1 表明两个变量的线性相关性越强 r 越接近于0 表明两个变量之间几乎不存在线性相关关系 通常 当 r 不小于0 75时 我们认为两个变量存在着很强的线性相关关系 1 2 3 4 1 2 3 4 做一做1 1 下表是x与y之间的一组数据 则y关于x的线性回归直线必过点 a 2 2 b 1 5 2 c 1 2 d 1 5 4 解析 样本点的中心为 1 5 4 而回归直线过样本点的中心 故选d 答案 d 1 2 3 4 做一做1 2 若分别计算具有线性相关关系的甲组数据和乙组数据 得相关系数r甲 0 8 r乙 0 9 则相关关系较强的是 a 甲组数据b 乙组数据c 甲 乙两组数据一样强d 不确定解析 r乙 0 9 r甲 0 8更接近于1 乙组数据相关性强 答案 b 1 2 3 4 2 随机误差 1 随机误差的均值e e 0 方差d e 2 2 线性回归模型的完整表达式是在此线性回归模型中 随机误差e的方差 2越小 通过回归直线预报真实值y的精度越高 知识拓展随机误差的主要来源 1 用线性回归模型近似地逼近真实模型所引起的误差 2 忽略了某些因素的影响所产生的误差 3 观测误差 1 2 3 4 1 2 3 4 知识拓展在线性回归模型中 r2表示解释变量对于预报变量变化的贡献率 r2越接近于1 表示回归的效果越好 因为r2越接近于1 表示解释变量和预报变量的相关性越强 如果对某组数据可以采取几种不同的回归方程进行回归分析 也可以通过比较几个r2 选择其值大的模型 1 2 3 4 做一做2 有下列说法 在残差图中 残差点比较均匀地落在水平的带状区域内 说明选用的模型比较合适 r2用来刻画回归效果 r2值越大 说明模型拟合效果越好 比较两个模型的拟合效果 可以比较残差平方和的大小 残差平方和越小的模型 拟合效果越好 其中正确命题的个数是 a 0b 1c 2d 3答案 d 1 2 3 4 3 非线性回归方程当回归方程不是形如y bx a a b r 时 称之为非线性回归方程 非线性回归方程也可以线性化 1 将幂函数型函数y axn a为常数 a x y均取正值 化为线性函数 将y axn两边取常用对数 则有lgy nlgx lga 令 lgy v lgx b lga代入上式得 nv b 其中n b是常数 其图象是一条直线 2 将指数型函数y cax a 0 c 0 a c为常数 化为线性函数 将y cax两边取常用对数 则有lgy xlga lgc 令 lgy b lgc d lga 代入上式得 dx b d b是常数 它的图象是一条直线 1 2 3 4 4 建立回归模型的基本步骤一般地 建立回归模型的基本步骤为 1 确定研究对象 明确哪个变量是解释变量 哪个变量是预报变量 2 画出确定好的解释变量和预报变量的散点图 观察它们之间的关系 如是否存在线性关系等 3 由经验确定回归方程的类型 4 按一定规则 如最小二乘法 估计回归方程中的参数 5 得出结果后分析残差图是否有异常 若存在异常 则检查数据是否有误 或模型是否合适等 1 2 1 相关分析的意义和作用是什么剖析函数是大家比较熟悉的概念 它是指变量之间的确定性关系 即当x取某一数值x时 变量y按照某种规则总有一个确定的数值与之对应 相关关系则是指变量之间的非确定性关系 由于随机因素的干扰 当变量x取确定值x时 变量y的取值不确定 是一个随机变量 但它的概率分布与x的取值有关 这里 我们看到了函数关系与相关关系的本质区别 在函数关系中变量x对应的是变量y的确定值 而在相关关系中 变量x对应的是变量y的概率分布 换句话说 相关关系是随机变量之间或随机变量与非随机变量之间的一种数量依存关系 对于这种关系 只能运用统计方法进行研究 通过对相关关系的研究又可以总结规律 从而指导人们的生活与生产实践 1 2 2 举例说明怎样确定线性回归的模型剖析在确定数据适合哪种模型之前 首先应该对观测数据绘图 以便进行简单的观测 例如 为了研究建立初始工资与当前工资的回归模型 首先对观测数据绘图 如下图所示 1 2 从图中可以发现初始工资与当前工资的趋势大概呈线性关系 可以建立线性回归方程 如果观测数据不呈线性分布 那么还可以根据其他方程模型的观测数据分布图形的特点以及对建立各方程后所得的r2进行比较以便确定一种最佳方程式 一般说来 如果所有的观测量都落到回归直线上 那么r2等于1 如果自变量与因变量之间没有回归关系 那么r2等于0 另外 我们通过对观测数据分布图形的仔细观察还可以发现一些奇异值 所以还可以通过对数据的检查来消除奇异值 但是 对待奇异值时要格外小心 题型一 题型二 题型三 题型四 例1 一个车间为了规定工时定额 需要确定加工零件所花费的时间 为此进行了10次试验 测得的数据如下 1 y与x是否具有线性相关关系 2 如果y与x具有线性相关关系 求回归直线方程 3 根据求出的回归直线方程 预测加工200个零件所用的时间为多少 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 变式训练1 某工厂1 8月份某种产品的产量x 单位 t 与成本y 单位 万元 的统计数据如下表 1 画出散点图 2 判断y与x是否具有线性相关关系 若有 求出其线性回归方程 题型一 题型二 题型三 题型四 解 1 散点图如图 2 由图可看出 这些点基本分布在一条直线附近 可以认为x和y线性相关 题型一 题型二 题型三 题型四 例2 某运动员训练次数与成绩之间的数据关系如下 1 作出散点图 2 求出回归方程 3 作出残差图 4 计算r2 5 试预测该运动员训练47次及55次的成绩 题型一 题型二 题型三 题型四 解 1 作出该运动员训练次数 x 与成绩 y 之间的散点图 如图 由散点图可知 它们之间具有线性相关关系 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 3 残差分析 作残差图如图 由图可知 残差点比较均匀地分布在水平带状区域中 说明选用的模型比较合适 4 计算r2 计算得r2 0 9855 说明了该运动员的成绩的差异有98 55 是由训练次数引起的 题型一 题型二 题型三 题型四 5 作出预报 由上述分析可知 我们可用回归方程 1 04148x 0 00309作为该运动员成绩的预报值 将x 47和x 55分别代入该方程可得y 49和y 57 故预测该运动员训练47次和55次的成绩分别为49和57 反思 r2 残差图 在回归分析中的作用 1 r2是用来刻画回归效果的 由可知r2越大 意味着残差平方和越小 也就是说模型的拟合效果就越好 2 残差图也是用来刻画回归效果的 判断依据是 残差点比较均匀地分布在水平带状区域中 带状区域的宽度越窄 说明模型拟合精度越高 回归方程预报精度越高 题型一 题型二 题型三 题型四 变式训练2 某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽数为多少之间的关系进行分析研究 他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数 得到如下资料 该农科所确定的研究方案是 先从这五组数据中选取2组 用剩下的3组数据求线性回归方程 再对被选取的2组数据进行检验 1 求选取的2组数据恰好是不相邻2天数据的概率 2 若选取的是12月1日与12月5日的两组数据 请根据12月2日至12月4日的数据 求出y关于x的线性回归方程 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 可以求得 r 0 998 由于 r 0 998 0 75 可知u和v具有很强的线性相关性 再求出b 0 146 a 0 548 题型一 题型二 题型三 题型四 变式训练3 在一化学反应过程中 某化学物质的反应速率y 单位 g min 与一种催化剂的量x 单位 g 有关 现收集了如下表所示的8组数据 试建立y与x之间的回归方程 题型一 题型二 题型三 题型四 解 根据收集的数据作散点图 如图 根据样本点的分布情况 可选用两种曲线模型来拟合 可认为样本点集中在某二次曲线y c1x2 c2的附近 令t x2 则变换后样本点应该分布在直线y bt a b c1 a c2 的周围 题型一 题型二 题型三 题型四 由题意得变换后t与y的样本数据如下表 y与t的散点图如图 由y与t的散点图可以观察到样本数据点并不分布在一条直线的周围 因此不宜用线性回归方程y bt a来拟合 即不宜用二次曲线y c1x2 c2来拟合y与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论