



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学案31直线的方程【导学引领】(一)考点梳理1直线的倾斜角与斜率(1)直线的倾斜角定义:在平面直角坐标系中,对于一条与x轴相交的直线,把x轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角当直线l与x轴平行或重合时,规定它的倾斜角为0.倾斜角的范围为0,180)(2)直线的斜率定义:一条直线的倾斜角的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即ktan ,倾斜角是90的直线斜率不存在过两点的直线的斜率公式经过两点p1(x1,y1),p2(x2,y2)(x1x2)的直线的斜率公式为k.2直线方程的五种形式名称方程适用范围点斜式yy1k(xx1)不含垂直于x轴的直线斜截式ykxb不含垂直于x轴的直线两点式不含垂直于坐标轴的直线截距式1不含垂直于坐标轴和过原点的直线一般式axbyc0(a、b不能同时为0)所有直线都适用3.过p1(x1,y1),p2(x2,y2)的直线方程(1)若x1x2,且y1y2时,方程为.(2)若x1x2,且y1y2时,直线垂直于x轴,方程为xx1.(3)若x1x2,且y1y2时,直线垂直于y轴,方程为yy1.4线段的中点坐标公式若点p1、p2的坐标分别为(x1,y1)、(x2,y2),线段p1p2的中点m的坐标为(x,y),则此公式为线段p1p2的中点坐标公式两个注意(1)求直线方程时,若不能断定直线是否具有斜率时,应对斜率存在与不存在加以讨论(2)在用截距式时,应先判断截距是否为0,若不确定,则需分类讨论【自学检测】1直线xya0(a为常数)的倾斜角为_2已知直线l经过点p(2,5),且斜率为.则直线l的方程为_3若点a(4,3),b(5,a),c(6,5)三点共线,则a的值为_4若abc三个顶点坐标为a(0,3),b(3,1),c(1,3),则bc边上的中线所在的直线方程为_5直线l过点a(1,2),且在x轴上的截距是y轴上截距的2倍且截距不为零,则其方程为_【合作释疑】5直线的倾斜角与斜率【训练1】 (1)直线xsin y20的倾斜角的取值范围是_(2)若直线l:ykx与直线2x3y60的交点位于第一象限,则直线l的倾斜角的取值范围是_【训练2】设直线l经过点p(3,4),圆c的方程为(x1)2(y1)24.(1)若直线l经过圆c的圆心,求直线l的斜率;(2)若直线l与圆c交于两个不同的点,求直线l的斜率的取值范围直线方程的类型及其求法【训练1】 (1)求过点a(2,1),倾斜角是直线l1:3x4y50的倾斜角一半的直线l的方程;(2)如图,射线oa、ob分别与x轴正半轴成45和30角,过点p(1,0)作直线ab分别交oa、ob于a、b两点,当ab的中点c恰好落在直线yx上时,求直线ab的方程【训练2】求适合下列条件的直线方程:(1)经过点p(3,2),且在两坐标轴上的截距相等;(2)过点a(1,3),斜率是直线y3x的斜率的;(3)过点a(1,1)与已知直线l1:2xy60相交于b点且ab5.直线方程的应用【训练1】 为了绿化城市,拟在矩形区域abcd内建一个矩形草坪(如图),另外efa内部有一文物保护区不能占用,经测量ab100 m,bc80 m,ae30 m,af20 m,应如何设计才能使草坪面积最大?【训练2】已知直线l:kxy2k0(kr)(1)证明:直线l恒过第一象限;(2)若直线l交x,y轴正半轴于a,b两点,求abo的面积的最小值及此时直线l的方程【当堂达标】1设ar,则“a1”是“直线l1:ax2y10与直线l2:x(a1)y40平行”的_条件2已知函数y的图象与函数ykx2的图象恰有两个交点,则实数k的取值范围是_【课后作业】1若经过两点a(4,2y1),b(2,3)的直线的倾斜角为,则y_.2过点a(0,2)且倾斜角的正弦值是的直线方程为_3已知直线l:axy2a0在x轴和y轴上的截距相等,则a_.4若过点m(2,m),n(m,4)的直线的斜率等于1,则m的值为_5.不论m取何值,直线(m1)xy2m10,恒过定点_6直线3x4yk0在两坐标轴上的截距之和为2,则实数k_.7设直线l的方程为xycos 30(r),则直线l的倾斜角的范围是_8设直线l的方程为(a1)xy2a0(ar)(1)若l在两坐标轴上的截距
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年分期付款租赁大型货车合同
- 2025年中国个性化宠粮行业市场全景分析及前景机遇研判报告
- 立秋天气特点
- 离婚协议争议解决机制:五大策略保障双方利益合同
- 离婚时子女特殊需求抚养与教育支持合同
- 离婚协议书中的财产分配与子女监护权移交的详细约定
- 离婚协议书车辆处置及保养费用分摊协议
- 环保设备租赁合同转让与环保标准三方协议
- 离婚上诉夫妻财产分割与子女抚养调解协议
- 种猪仔猪养殖基地与农业科技创新平台合作合同
- 成人床旁心电监护护理规程
- 本科生科研管理制度
- 大输液产品研究报告
- 2025版技术服务合同协议
- GB 5768.1-2025道路交通标志和标线第1部分:总则
- 江西红色文化考试试题及答案
- 食品仓库记录管理制度
- 企业团委管理制度
- 冻干粉培训课件
- 公路应急抢修合同标准文本
- 2025年新高考“八省联考”语文试题及参考答案解析版
评论
0/150
提交评论