




已阅读5页,还剩32页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 1 3圆柱 圆锥 圆台和球 一 二 三 一 圆柱 圆锥 圆台 问题思考 1 圆柱 圆锥和圆台这三类几何体能通过平面图形形成吗 提示 能 这三类几何体都是旋转体 可以分别通过矩形 直角三角形 直角梯形绕一特定轴旋转形成 2 将圆柱 圆锥和圆台的侧面沿它们的一条母线剪开 在平面上展开得到它们的侧面展开图分别是什么图形 请画出来 提示 将圆柱 圆锥和圆台的侧面沿它们的一条母线剪开 然后在平面上展开 侧面展开图分别是矩形 扇形和扇环 如图所示 一 二 三 一 二 三 3 填写下表 一 二 三 一 二 三 4 做一做 有下列命题 以直角三角形的一边所在直线为轴旋转一周所得的旋转体是圆锥 以直角梯形的一腰所在直线为轴旋转一周所得的旋转体是圆台 圆柱 圆锥 圆台的底面都是圆 用一个平面截圆锥 得到一个圆锥和一个圆台 其中正确的个数为 a 0b 1c 2d 3 一 二 三 解析 以直角三角形的一条直角边所在直线为轴旋转一周才可以得到圆锥 故 错误 以直角梯形垂直于底边的腰所在直线为轴旋转一周才可以得到圆台 故 错误 圆柱 圆锥 圆台的底面为圆面 故 错误 用平行于圆锥底面的平面截圆锥 才可以得到一个圆锥和一个圆台 故 错误 因此 正确的个数为0 答案 a 一 二 三 二 球 问题思考 1 平时我们大家在体育课上玩的篮球与本节将要研究的球的概念一致吗 提示 不一致 因为篮球内部是空的 球是几何体 内部不是空的 球体的表面称之为球面 若篮球皮厚度不计 篮球不是球体 但比较接近球面的定义 2 实际生活中 飞机 轮船为什么尽可能以大圆弧为航线航行 提示 因为球面上两点间的最短距离是球面距离 这样走可使行程最短 一 二 三 3 填空 1 概念 一个半圆绕着它的直径所在的直线旋转一周所形成的曲面叫做球面 球面围成的几何体叫做球 形成球的半圆的圆心叫球心 连接球面上一点和球心的线段叫球的半径 连接球面上两点且通过球心的线段叫球的直径 2 表示 用表示球心的字母来表示 3 球面也可以看作空间中到一个定点的距离等于定长的点的集合 球面被经过球心的平面截得的圆叫做球的大圆 被不经过球心的平面截得的圆叫做球的小圆 4 在球面上 两点之间的最短距离就是经过这两点的大圆在这两点间的一段劣弧的长度 我们把这个弧长叫做两点的球面距离 一 二 三 三 组合体 问题思考 1 将矩形 直角三角形 直角梯形按如图所示的方式旋转 得到的图形仍是圆柱 圆锥 圆台吗 提示 不是 图 旋转后得到的是组合体 大圆柱中间挖掉一个小圆柱 图 旋转后得到2个对底的圆锥 图 得到的几何体是一个圆锥和一个圆柱的组合体 2 填空 由柱 锥 台 球等基本几何体组合而成的几何体叫做组合体 一 二 三 思考辨析判断下列说法是否正确 正确的在后面的括号内画 错误的画 1 过球面上的两点可作无数个大圆 2 连接圆柱上 下底面圆周上两点的线段是圆柱的母线 3 夹在圆柱的两个平行截面间的几何体还是一个圆柱 4 圆锥截去一个小圆锥后剩余部分是圆台 5 通过圆台侧面上一点 有无数条母线 答案 1 2 3 4 5 探究一 探究二 探究三 探究四 探究五 思维辨析 概念辨析题 例1 下列说法正确的是 a 圆台是直角梯形绕其一边旋转而成的b 圆锥是直角三角形绕其一边旋转而成的c 圆柱不是旋转体d 圆台可以看作是由平行于圆锥底面的平面截圆锥得到的解析 根据旋转体的定义及圆锥与圆台的内在联系易知d正确 答案 d反思感悟对于旋转体 必须清楚直角梯形必须绕其垂直于底边的腰所在直线旋转才能形成圆台 直角三角形必须绕直角边所在直线旋转才能形成圆锥 圆柱是由矩形绕其一边所在直线旋转形成的几何体 类比棱台的定义 圆台也可以看作是圆锥被平行于底面的平面所截得的 探究一 探究二 探究三 探究四 探究五 思维辨析 变式训练1有下列四个命题 圆柱是将矩形旋转一周所得的几何体 球心和球面上任意一点的连线是半径 圆台的任意两条母线的延长线可能相交也可能不相交 圆锥的轴截面是等腰三角形 其中错误命题的个数是 a 1b 2c 3d 4解析 错 以矩形某一边所在直线为轴旋转才是圆柱 以对角线所在直线为轴旋转则不是圆柱 由球的半径知 正确 错 一定相交 正确 答案 b 探究一 探究二 探究三 探究四 探究五 思维辨析 组合体的判断 例2 1 如图所示的组合体的结构特征有以下几种说法 由一个长方体割去一个四棱柱所构成的 由一个长方体与两个四棱柱组合而成的 由一个长方体挖去一个四棱台所构成的 由一个长方体与两个四棱台组合而成的 其中正确说法的序号是 2 如图所示的几何体是由下面哪一个平面图形旋转形成的 探究一 探究二 探究三 探究四 探究五 思维辨析 1 答案 2 解 这个组合体由上到下可分为3部分 分别是圆锥 圆台 圆柱 过旋转轴截面如图 因此是由 中平面图旋转而成 探究一 探究二 探究三 探究四 探究五 思维辨析 反思感悟巧识旋转而成的组合体 探究一 探究二 探究三 探究四 探究五 思维辨析 1 将本例2 2 中 绕轴旋转一周后形成什么样的几何体 2 将本例2 2 中的几何体变为 则由什么样的平面图形旋转而成 解 1 中的平面图形绕轴旋转一周后形成的几何体是下面是一个圆柱 中间是两个同底的圆台 最上面是一个圆锥组成的组合体 如图所示 探究一 探究二 探究三 探究四 探究五 思维辨析 2 如图所示 探究一 探究二 探究三 探究四 探究五 思维辨析 简单旋转体的计算问题 例3 轴截面为正方形的圆柱叫做等边圆柱 已知某等边圆柱的轴截面面积为16 求该圆柱底面周长和高 思路分析 作出圆柱的轴截面 建立轴截面边长和圆柱底面半径 高之间的关系 进而求解问题 解 如图所示 作出等边圆柱的轴截面abcd 由题意知 四边形abcd为正方形 设圆柱的底面半径为r 则ab ad 2r 面积s ab ad 2r 2r 4r2 16 解得r 2 所以圆柱底面周长c 2 r 2 2 4 高2r 4 反思感悟解决有关圆柱的计算问题 要抓住它的基本量 底面半径 高 母线 与轴截面矩形之间的关系 注意在轴截面矩形中的一边长为圆柱的高 另一边长为圆柱的底面直径 探究一 探究二 探究三 探究四 探究五 思维辨析 变式训练2轴截面为正三角形的圆锥叫做等边圆锥 已知某等边圆锥的轴截面面积为 求该圆锥的底面半径 高和母线长 解 如图为等边圆锥的轴截面 设圆锥的底面半径为r 高为h 母线长为l 则在 sab中 有ob r so h sb l 且 sbo 60 探究一 探究二 探究三 探究四 探究五 思维辨析 组合体中的计算问题 例4 一个圆锥的底面半径为2 高为6 在其中有一个高为x的内接圆柱 1 用x表示圆柱的轴截面面积s 2 当x为何值时 s最大 思路分析 考虑应用轴截面中的平行关系列比例式解决 解 1 根据题意作截面图如图所示 设内接圆柱的底面圆半径为r 探究一 探究二 探究三 探究四 探究五 思维辨析 反思感悟1 涉及立体几何中的最值问题 一般是设出变元 利用函数思想来解决 2 组合体问题中常见的主要是切接问题 解决此类问题关键要画出组合体的核心截面 并保证截面图能搭建起两个或多个几何体的内在联系 能反映出各个几何体的核心元素 这样就将立体几何问题的计算归结为平面几何问题的计算 探究一 探究二 探究三 探究四 探究五 思维辨析 变式训练3若圆锥的轴截面是一个面积为9cm2的正三角形 则其内切球的半径为 解析 轴截面如图所示 设正三角形sab的边长为acm 圆o的半径为rcm 则 答案 c 探究一 探究二 探究三 探究四 探究五 思维辨析 球中的计算问题 例5 已知a b c是球o上的三点 ab 10 ac 6 bc 8 球o的半径等于13 则球心o到 abc所在小圆的距离为 思路分析 本题考查了球的性质及截面的性质应用 同时考查了学生识图能力和运算能力 解答本题的关键是ab为小圆的直径 解析 因为ab 10 ac 6 bc 8 所以 abc为直角三角形且ab为点a b c所在小圆的直径 所以r 5 轴截面图如图 所以d2 r2 r2 132 52 122 所以球心o到 abc所在小圆的距离为12 答案 12 探究一 探究二 探究三 探究四 探究五 思维辨析 反思感悟解决有关球的问题时常用到如下性质 1 用任意平面截球所得的截面是一个圆面 球心和截面圆圆心的连线与这个截面垂直 2 若分别用r和r表示球的半径和截面圆的半径 用d表示球心到截面的距离 则r2 r2 d2 球的有关计算问题 常归结为解这个直角三角形问题 探究一 探究二 探究三 探究四 探究五 思维辨析 变式训练4用一个平面截半径为5cm的球 球心到截面的距离为4cm 求截面圆的面积 解 如图所示 设ak为截面圆的半径 o为球心 则ok ak 在rt oak中 oa 5cm ok 4cm 截面圆的面积s ak2 9 cm 2 探究一 探究二 探究三 探究四 探究五 思维辨析 因不理解球面距离的含义而致误 典例 设地球半径为r 在北纬45 圈上有a b两地 它们的纬线圈上的劣弧长等于r 求a b两地间的球面距离 错解如图所示 a b是北纬45 圈上两点 o 为此纬线圈的圆心 易知 ao b所对的劣弧的长为所求球面距离 探究一 探究二 探究三 探究四 探究五 思维辨析 以上解答过程中都有哪些错误 出错的原因是什么 你如何订正 你怎么防范 提示 错误的产生是没有理解a b两地间的球面距离是过a b两点的大圆在a b间的劣弧长度 探究一 探究二 探究三 探究四 探究五 思维辨析 正解 如图所示 a b是北纬45 圈上的两点 ao 为此纬线圈的半径 所以oo ao oo bo 因为 oao obo 45 在 aob中 ao bo ab r 则 aob为正三角形 所以 aob 60 探究一 探究二 探究三 探究四 探究五 思维辨析 防范措施对于a b两地间的球面距离问题 首先要明确 球面距离不是直线距离 而是过a b两点的大圆在a b两点间的劣弧的长度 因此 遇到此类问题 先找出两点所在大圆 再结合角度分析求解 总之明确大圆后 就把空间问题转化为平面圆上的问题了 1 2 3 4 5 6 1 一个直角三角形绕斜边所在直线旋转360 形成的空间几何体为 a 一个圆锥b 一个圆锥和一个圆柱c 两个圆锥d 一个圆锥和一个圆台答案 c 1 2 3 4 5 6 2 一个正方体内接于一个球 过球心作一截面 则截面不可能是 解析 过球心的任何截面都不可能是正方形内接于圆 答案 d 1 2 3 4 5 6 3 一个圆台的上 下底面面积分别是 cm2和49 cm2 一个平行于底面的截面面积为25 cm2 则这个截面与上 下底面的距离之比是 解析 作圆台的轴截面如图所示 则有rt a1be rt baf 所以a1e bf be af 由已知易得a1o1 1cm ao 7cm bo 5cm 所以a1e bf 2 1 答案 a 1 2 3 4 5 6 4 若把地球看成一个球体 则地球上北纬60 纬线长和赤道线长的比值为 a 0 8b 0 75c 0 5d 0 25 解析 设地球
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设计师聘用合同书
- 瓶装氧气培训课件
- 安全施工培训课程课件
- 安全方面的培训心得课件
- 奉节畜牧工程方案(3篇)
- 定西假山工程制作方案(3篇)
- 球车安全驾驶培训目的课件
- 安全文明培训内容课件
- 安全文明出行培训内容课件
- 风电场工程建设方案(3篇)
- 义务教育语文课程标准(2022)测试题带答案(20套)
- GB/T 27818-2011化学品皮肤吸收体外试验方法
- GB/T 22512.2-2008石油天然气工业旋转钻井设备第2部分:旋转台肩式螺纹连接的加工与测量
- GB/T 19137-2003农药低温稳定性测定方法
- 水利施工组织设计范文(完整常用版)
- DBJ53-T-40-2011 云南省城镇园林工程施工质量验收规程
- 《正确认识广告》课件3
- DB15T 2412-2021 蒙餐 蒙式牛肉丁
- 大学物理高斯定理课件-英文版
- GB∕T 15089-2001 机动车辆及挂车分类
- 班级自主化管理工作总结
评论
0/150
提交评论