




已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
l 黏接技术一 概念黏接技术:就是采用黏合剂将各种材料或部件连接起来的技术。黏接技术特点:(1)将同种或不同种材料很好地黏接在一起。(2)黏接比焊接、铆接以及螺栓连接质量轻。(3)黏接接头的应力分布均匀,克服了其他连接形式会产生应力集中的不足。(4)黏接除了将材料连接起来外,还兼有密封、防腐、绝缘、缓冲等作用。(5)黏接通常工艺比较简单,操作方便,节约能源,成本降低。(6)黏接存在以下缺点:黏接单位强度低;使用温度低;耐各种老化性能差等。黏接力:是由胶与被黏物之间的黏附力和胶层的内聚力组成。黏接力就是这两种力共同作用的结果,其中任何一种力的丧失都将导致黏接破坏。内聚力:是指胶黏剂本身分子间的作用力,它是由胶黏剂的基本组分黏料、各种配合助剂以及配方、工艺、环境等因素决定。内聚强度:在黏接试样的剪切破坏试验中,黏接破坏发生在胶黏剂层,即在被破坏的两块试片的表面都附有一层胶黏剂,并且胶的表面是粗糙的,此时测得的力是该胶的内聚力,内聚力除以其黏接面积就得到了该胶的内聚强度。黏附力:胶黏剂与被黏物之间的作用力。当做黏接件拉伸或剪切试验时,内聚力大于黏附力,则发生黏附破坏。黏接试片沿着胶层界面破坏,被破坏的样片表面光洁,即一个样片上没有胶层,裸露出材料的表面,而另一个样片上附有胶层,此时测得的力为黏附力。黏附力的产生包括胶黏剂与被黏物之间的物理作用、化学作用和机械作用。物理作用指分子间力即范德华力、氢键力,它们广泛存在于黏接中。化学作用指胶黏剂与被黏物之间的形成牢固的化学键结合,即离子键力、共价键力、金属键力、配位键力。机械作用指由于被黏物表面存在大量细小的孔隙,胶黏剂分子由于扩散、渗透作用而进入被黏物内部,形成了机械的“钩键”、“锚键”,即所谓机械力。润湿:指液体在固体表面分子间力作用下的均匀铺展现象,也就是液体对固体的亲和性。常用接触角表示。两者间接触角越小,固体表面越容易润湿。内应力:在黏接过程中产生的内应力是影响黏接强度和耐久性的重要因素之一。因此,在黏接过程中,必须采取有效措施来降低内应力。内应力包括收缩应力和热应力。收缩应力指胶黏剂无论用什么方法固化,都会发生一定体积收缩。而在胶黏剂失去流动之后,体积还没达到平衡值时,进一步固化引起体积收缩就会产生内应力。热应力是由于高分子材料与金属材料、无机材料的热膨胀系数相差很大,当温度发生变化时就会在黏接界面产生热应力。热应力大小与温度变化、胶黏剂与被黏物膨胀系数的差别以及材料的物理状态和弹性模量有关。二 黏接理论 主要有机械理论、吸附理论、扩散理论、静电理论、弱边界理论、化学键理论、配位键理论、酸碱理论等,每种理论都只能解释一部分黏接现象,简要介绍如下: (1)机械理论 机械理论是胶黏剂对两个被黏物的接面机械附着作用的结果。以固体表面粗糙、多孔为基础,胶黏剂流动、扩散、渗入被黏物表面,固化或胶凝后,与被黏物表面通过互相咬合连接起来,形成“钩键”、“钉键”、“锚键”等,将两个被黏物牢固结合在一起。 (2)吸附理论 吸附理论是把胶黏剂黏接归于胶与被黏物之间分子间力的作用。这种相互作用包括化学键力、范德华力和氢键力。(3)扩散理论 扩散理论认为,高分子材料之间的黏接是由于胶黏剂与被黏物表面分子或链段彼此之间处于不停的热运动引起的相互扩散作用,使胶与被黏物之间的界面逐渐消失,形成相互交织的牢固结合,黏接接头的强度随时间延长而达到最大值。 (4)静电理论 又叫双电层理论,在胶黏剂与被黏物接触的界面上形成双电层,由于静电吸引而产生黏接。 (5)弱边界层理论 妨碍黏接作用形成并使黏接强度降低的表面层称为弱边界层。发生胶黏剂和被黏物之间黏附力破坏,即弱边界层破坏。 (6)化学键理论 由于胶黏剂分子与被黏物表面通过化学反应形成化学键而结合,因此使黏接层获得高强度的黏接。 (7)配位键理论 胶黏剂与被黏物在黏接界面上由胶黏剂提供电子对,被黏物提供空轨道所形成的配位体系,提高黏接强度。 (8)酸碱理论 在黏接体系属于酸碱配对的情况下,酸碱作用能提高界面的黏接强度。三 黏接技术黏接技术三个基本要素:胶黏剂、被黏材料、黏接工艺技术。要想获得好的黏接,必须选择合适的胶黏剂,正确处理被黏材料表面,黏接工艺技术是非常关键。3.1胶黏剂选用依据 胶黏剂的种类很多,其品种更多。应根据不同情况,选择合适的胶黏剂。3.1.1根据被黏材料化学性质选胶 极性材料 极性材料一般应选用极性胶黏剂。如金属、陶瓷、石材、水泥、玻璃等无机材料;木材、皮革、纸张等有机材料;含有大量极性基团如羟基、羧基、氨基、酰胺基的聚合物,环氧树脂、酚醛树脂、不饱和聚酯树脂、聚氨酯树脂、氨基树脂、丁氰橡胶等,丙烯酸酯胶、聚醋酸乙烯酯胶以及无机胶。 弱极性材料和非极性材料 非极性材料是分子中不含或含很少的极性基团的有机材料、聚合物材料,如沥青、石蜡、聚乙烯、聚丙烯、聚苯乙烯、聚苯醚、硅树脂、氟树脂和橡胶等。弱极性材料指聚氯乙烯、氯化聚醚、有机玻璃、聚碳酸酯、丁苯橡胶、乙丙橡胶等。 黏接时,必须进行表面处理,然后采用同种聚合物溶解在溶剂里进行自黏,也可采用其它黏合剂黏接。 结晶性聚合物材料 结晶度越高越难黏接,一般采用橡胶类的胶进行黏接。3.1.2根据被黏材料物理性质选胶 刚性和脆性材料 石材、水泥等可用如环氧树脂等热固性树脂胶黏接,陶瓷、玻璃等可用橡胶或其它增韧材料增韧的热固性树脂胶黏接。各种金属及合金材料,一般要求黏接强度高,宜采用橡胶或其它增韧材料增韧的胶黏剂黏接,如酚醛丁氰、环氧丁氰、酚醛缩醛、反应型丙烯酸酯胶黏接。 弹性和韧性材料 可用橡胶类胶黏剂黏结。 多孔性材料 主要指高分子树脂或橡胶的发泡材料。硬质泡沫材料一般用环氧树脂、聚氨酯等树脂或氯丁胶等胶黏剂黏接。苯板则要采用水性胶黏剂如聚乙烯缩醛类、白胶、水乳胶等黏结。3.1.3根据被粘物工作受力情况选胶 被黏物黏接接头受力形式是设计、选胶的依据。胶黏剂承受剪切、拉伸的强度远大于承受剥离、不均匀扯离、冲击、弯曲的强度。热塑性胶黏剂用于一般黏接的非结构胶。橡胶类胶黏剂一般用于密封胶、固定胶,适合于柔性材料的黏接。热固性胶黏剂比较脆,硬度大,适用于承受拉伸、剪切的被黏物的结构性胶。 被黏物的大小、尺寸、形状、厚度,被黏物或黏接接头的受力情况,允许黏接的接头设计形式,黏接面积,同样是选胶的重要条件。 大部件黏结由于黏接面积大,选胶时还要考虑胶的使用时间。3.1.4根据被黏物允许的工艺条件选胶 选胶必须根据实际情况,一切从实际出发,合理选择和使用黏合剂,达到黏接目的。3.1.5根据被黏物用途、要求选胶 受力状况: 黏接分结构性黏接、非结构性黏接和一般性固定、临时性固定等黏结。根据受力大小,选用合适黏合剂。 使用温度 根据使用温度选择耐高温结构胶,300以上的结构胶只有聚酰亚胺、聚苯并咪唑和改性酚醛等。150300的结构胶酚醛丁腈、酚醛缩醛有机硅、环氧丁腈等,大多数黏合剂都在150或100以下使用。 冷热交变 冷热交变对胶黏剂黏接接头影响很大。因为被黏材料不同,胶黏剂品种不同,它们的热膨胀系数不同,黏结界面会产生内应力,导致接头破坏。一般选用耐高低温性好,韧性好的胶黏剂。使用环境 湿度,酸碱介质,耐溶剂性,老化。3.1.6胶黏剂的毒性 3.1.7胶黏剂的经济性3.2被粘材料被粘材料需要表面处理,该部分见本人在929.中被粘材料表面处理一文。3.3黏接操作工艺 黏接工艺的内容和程序如图 表面处理配胶涂胶晾置合拢清理初固化固化后固化检查加工3.3.1黏接接头设计的基本原则 黏接接头就是通过胶黏剂将被黏物连接成为一个整体的过渡,受力或不受力的部位如图/被黏物 胶黏剂/被黏物黏接接头在外力作用下主要受到四种力的作用:剪切、拉伸、剥离和不均匀扯离。见图黏接接头受力类型黏接接头受外力作用,一般发生四种情况破坏,即内聚破坏(胶层破坏)、被粘件破坏、界面破坏(黏附破坏)、混合破坏。由接头力学特性可知,抗拉、剪切、抗压强度是比较高的,而抗剥、抗弯的能力就弱得多。因此从力学性能角度考虑,在黏接接头设计时,接头形式的设计与选择的基本原则是:受力方向在黏接强度最大方向上。具有最大的黏接面积,提高接头承载能力。尽可能减少或避免产生剥离、劈开和弯曲的可能。胶层薄而连续、尽可能均匀、避免欠胶。3.3.2黏接接头基本形式接头基本形式有四种:对接、角接、T接、平接。a b c d d3.3.3 配胶 由于黏接材质不同,黏合剂品种不同,需要根据实际情况,配胶。如双组分胶黏剂根据需要,调整比例和固化速度,保证最佳黏接效果。对于单组分胶黏剂,一般直接使用。有时候,通过填加稀料,调节黏度,降低胶水用量。3.3.4 涂胶 涂胶就是将胶黏剂以适当的方式涂布于被黏物表面的操作。对于不同胶黏剂有不同的涂胶工艺。对于热熔胶可用热熔胶枪;对于粉状胶可进行喷撒;对于液体、糊状或膏状可刷胶、喷胶、注胶、浸胶、漏胶、刮胶、滚胶等。其中以涂刷最普遍。刷胶法就是用刷子或毛笔蘸取胶液涂布到被黏物表面上,最好顺着一个方向,不要往复,速度要慢,防止带入气泡,尽可能均匀一些,中间少多一些。平均厚度0.05-0.20mm。在保证不缺胶情况下,尽可能薄一些。溶剂型胶黏剂要涂2-3遍。3.3.5 晾置 涂胶后,适当晾置,有利于排除空气、流匀胶层、初步反应、增加黏性。502胶晾置片刻,吸收空气中微量水分,引发聚合,实现固化。溶剂型胶黏剂必须晾置以挥发溶剂,否则固化后的胶层结构松散,会有气孔,使黏结强度下降。每种胶水晾置时间不同,晾置过度,则黏性大失,无法黏接。3.3.6 合拢 合拢有称装配、黏接等,就是将涂胶后经过晾置的被黏物表面紧密贴在一起,对正位置。对于液态无溶剂胶黏剂,合拢后来回错动几次,以增加接触,排除空气,调匀胶层,如发现缺胶或有缝,应及时补胶,合拢之后压出微小胶圈为好。对于橡胶型胶黏剂合拢时应一次对准位置,不可错动。3.3.7 清理 黏结后露出的胶水应及时清理。3.3.8 固化 固化分三个阶段,初固化即初黏,指胶黏剂在凝胶时达到强度固化,一般胶黏剂在24小时内,通过物理作用和化学作用,使胶黏强度达到最大值,后固化,有些胶种通过热处理后,消除内应力,提高黏接强度。 固化工艺三个重要参数,温度、压力、时间。其中温度影响最大。3.3.9 检查 固化后的黏接件,应该进行一次全面检查,确保黏接质量。 综上所述,要获得牢固的黏接,胶黏剂是基本因素,接头是重要因素,工艺是关键因素,三者密切相关,不可偏废。l 粘接机理-影响粘接强度的化学因素影响粘接强度的化学因素主要指分子的极性、分子量、分子形状(侧基多少及大小)、分子量分布、分子的结晶性、分子对环境的稳定性(转变温度和降解)以及胶粘剂和被粘体中其它组份性质PH值等。 1.极性 一般说来胶粘剂和被粘体分子的极性影响着粘接强度,但并不意味着这些分子极性的增加就一定会提高粘接强度。 从极性的角度出发为了提高粘接强度,与其改变胶粘剂和被粘体全部分子的极性,还不如改变界面区表面的极性。例如聚乙烯、聚丙烯、聚四氟乙烯经等离子表面处理后,表面上产生了许多极性基团,如羟基、羰基或羧基等,从而显著地提高了可粘接性。 2.分子量 聚合物的分子量(或聚合度)直接影响聚合物分子间的作用力,而分子间作用力的大小决定物质的熔点和沸点的高低,对于聚合物决定其玻璃化转变温度Tg和溶点Tm.。所以聚合物无论是作为胶粘剂或者作为被粘体其分子量都影响着粘接强度。 一般说来,分子量和粘接强度的关系仅限于无支链线型聚合物的情况,包括两种类型。第一种类型在分子量全范围内均发生胶粘剂的内聚破坏,这时,粘接强度随分子量的增加而增加,但当分子量达到某一数值后则保持不变。第二种类型由于分子量不同破坏部分亦不同。这时,在小分子量范围内发生内聚破坏,随着分子量的增大粘接强度增大;当分子量达到某一数值后胶粘剂的内聚力同粘附力相等,则发生混合破坏;当分子量再进一步增大时,则内聚力超过粘附力,浸润性不好,则发生界面破坏。结果使胶粘剂为某一分子量时的粘接强度为最大值。 3.侧链 长链分子上的侧基是决定聚合物性质的重要因素,从分子间作用力考虑,聚合物支链的影响是,当支链小时,增加支链长度,降低分子间作用力。当支链达到一定长度后,开始结晶,增加支链长度,提高分子间作用力,这应当是降低或提高粘接强度的原因。 4.PH值 对于某些胶粘剂,其PH值与胶粘剂的适用期,有较为密切的关系,影响到粘接强度和粘接寿命。一般强酸、强碱,特别是当酸碱对粘接材料有很大影响时,对粘接常是有害的,尤其是多孔的木材、纸张等纤维类材更容易受影响。 由于像热固性的酚醛树脂和脲醛树脂的固化过程受PH值的影响很大,常常要求酸度较大。例如,固化时在酚醛树脂中加入对甲苯磺酸或磷酸,在脲醛树脂中加入氯化铵或盐酸。因此,在不希望酸度大又要粘接的场合,选用中性的间苯酚甲醛树脂是适宜的。 将木材表面预先用碱处理,一般可得到牢固的接头。但还必须注意胶层的PH值,它对胶层比对被胶接表面更有影响。 5.交联 聚合物的内聚强度随交联密度的增加面增大,而当交联密度过大时聚合物则变硬变脆,因而使聚合物耐冲击强度降低。交联聚合物的强度与交联点数目和交联分子的长度密切相关,随着交联点数目的增多,交联间距的变短以及交联分子长度的变短,交联聚合物会变得又硬又脆。 6.溶剂和增塑剂 溶剂型胶粘剂的粘接强度当然要受胶层内残留溶剂量的影响。溶剂量多时,虽浸润性好,但由于胶粘剂内聚力变小,而使内聚强度降低。胶粘剂聚合物之间的亲合力大时,随着溶剂的挥发粘接强度增大。两者之间无亲合力时,残留一些溶剂时胶粘剂的粘附性却较大,随着溶剂的挥发,强度反而下降。例如聚醋酸乙烯不能粘接聚乙烯,但加入少量溶剂后则可粘接。显然,溶剂起了增加两者间亲合力的作用。 增塑剂和溶剂的作用类似,有时即便在粘不上的情况下,加入适当的增塑剂也可粘上。当是,增塑剂也将随着时间的推移或是挥发,或是向表面渗出,在增塑剂减少的同时粘接强度不断下降。相反,有时被粘物内的增塑剂也会渗移到胶层里,使胶粘剂软化而失去内聚粘接强度。或增塑剂聚集在界面上而使粘接界面分离。 7.填料 在胶粘剂中配合填料有如下作用:(1)增加胶粘剂的内聚强度;(2)调节粘度或工艺性(例如触变性);(3)提高耐热性;(4)调整热膨胀系数或收缩性;(5)增大间隙的可填充性;(6)给予导电性;(7)降低价格;(8)改善其他性质。 8.结晶性 结晶度高的聚合物分子的缩聚状态是有规则的,如果溶点不高,加热结晶聚合物,将使结晶范围内的有序的分子排列发生混乱,分子开始向溶融状态过渡。因此,结晶度高的聚合物适宜作热溶。 9.分解 在使用过程中,胶粘剂分解是使粘接强度降低成的重要因素,而使胶粘剂分解的原因有水、热、辐照、酸、碱及其他化学物质。聚合物与水反应而分解称水解。加热常常又可能导致聚合物交联,聚合物抗水解能力因其分子中化学键的不同面异。多数水溶性聚合物易于水解。不溶于水的聚合物水解就非常慢,而聚合物吸附水的能力对水解起着重要作用,聚合物水解也受结晶性和链的构象的明显影响。由于微量的酸或碱可加速某些聚合物水解,聚酯类缩合树脂与酸或碱接触时,很容易水解。环氧树脂的耐湿性根据固化剂的种类和使用环境不同而有明显的不同,以聚酰胺固化的环氧树脂因酰胺键水解而破坏;以多元酸酐固化的环氧树脂因酯键的断裂而解体;聚氨酯也常因酯键水解面破坏,而具有醚键、碳-碳键结构的聚合物,如酚醛树脂、丁苯、丁腈橡胶,就不易水解,耐水性良好。 聚合物加热过度将引起下列变化:(1)聚合物分子的分解;(2)继续交联;(3)可挥发和可迁移成分的逸出;这些过程的结果将导致胶粘剂内聚强度下降或界面作用力降低。 聚合物在高温下会发生降解和交联的作用,降解使聚合物分子链断裂,分子量下降,使聚合物强度降低,交联使分子间形成新的化学键,分子量增加,聚合物强度上升。粘接接头上聚合物不断交联将使聚合物发脆,接头强度变坏。l 粘接机理-粘接破坏机理 粘接破坏发生在接头最薄弱的地方,不一定总是发生在胶粘剂和被粘物的界面上。破坏的形式有: (1)内聚破坏-破坏发生在胶粘剂层内 (2)粘附破坏-破坏发生在胶粘剂与被粘物界面上 (3)被粘材料破坏 (4)混合破坏即胶粘剂的内聚破坏和粘附破坏与被粘材料破坏的混合。 胶粘剂或被粘材料破坏是理想的破坏形式即100%的内聚破坏,因为这种破坏在材料粘接时能获得最大强度。 由于胶粘剂固化时的自然收缩和胶粘剂与被粘物性质上的差异,致使粘接接头存在内应力。为了减少因热交变或高温固化冷却后产生的应力,尽可能使胶粘剂与被粘物的热膨胀系数相接近。降低内应力的办法有两种添加填料;选用弹性良好的胶粘剂。因此内应力集中造成的破坏将降低粘接强度。l 粘接机理-浸润理论 任何固体表面放大起来看都是高低不平的,要使胶粘剂完全适合固体表面的“地貌“,在胶接过程中必须使胶粘剂变成液体,并且完全浸润固体的表面。完全浸润是获得高强度接头的必要条件。如果浸润不完全,就会有许多气泡出现在界面中,在应力作用下气泡周围会发生应力集中,致使强度大力下降。 1、浸润的热力学: (1)Young氏方程: rsl+rlcos=rs 其中:rsl,rl,rs分别为固体与液体间的表面张力、液体、固体的表面张力,为接触角。 讨论: a.扩展浸润:液体在固体表上自动展开并浸润整个表面。即=0, rsl+rl=rs 为其热力学条件。逆功为WS=rs -rl -rsl b.浸没浸润:固体浸没在液体里,其表面每一个缝隙被液体浸润。逆功为Wi=rs -rsl 。 c.接触浸润:只浸润液体所接触的部分. 逆功为Wa=rs -rsl - rl。 (2) 胶粘剂的热力学浸润 固体表面分为rs=100达因/cm的高能表面,如金属和无机物;rs=100达因/cm的低能表面如塑料。液体在固体表面自动展开的条件是rl=rC (rC为极限表面张力)。 胶粘剂在固体表面的浸润相当于浸没浸润,表面粗糙度与浸润的关系 :(假定浸润表面一个小狭缝只有自由能F变化)。 F=ASN* rsl-ASV* rs+ ALV * rl iF=- rl1+ ASV/ ALV*cos* ALV =- rl* ALV(1+ ASV/ ALV*cos)其中ASV为被浸润固体的真实面积,ALV为被浸润固体的表面积,ASV/ ALV衡量固体的粗糙度。当90时,F90时,ASV/ ALV1,F0或 ASV/ ALV增加,则热力学不完全浸润。 2、浸润的动力学 浸润速度与被粘物的表面结构、胶粘剂粘度和表面张力有关。 T=2k/( rl cos) (K-与表面结构有关的常数) 由于有机液体的表面张力rl 相差不会很大,浸润所需时间主要取决于液体粘度和接触角的大小。 由上可知液体粘度越低,浸润时间越短,便充分浸润表面的缝隙;越小,浸润速度越快。 3、胶接表面化学的最佳条件 当胶粘剂对液体表面的粘附功最大,或者界面能最低时,解到最好胶接强度。此为胶接表面化学的最佳条件。 最大逆功Wa= rs +rl -rsl= rl (1+ cos) 当cosK=1,=0,原子直径相当于R3A,则热力学粘附强度F=Wa/R= 2rl /R。例如:石蜡液体rl =30达因/cm2=3*10-2N/ cm2,则f=2000kg/ cm2或200Mpa/ cm2.l 粘接机理-胶接头的环境适应老化 胶接头在存放或使用过程中由于受到热、水、光、氧气等环境因素作用,性能逐渐下降,使接头完全破坏,这就是胶接头的老化。 1、 金属胶接头的老化 1、1接头的大气老化机理 A、水的作用 (1)水对胶接头的界面的作用:也叫界面解吸附机理,水的老化作用主要发生在胶接界面,大量的水分子沿着亲水性金属表面(更确切地说是金属氧化物表面)很快地渗透到整个胶界面后,取代胶粘剂分子原先在金属表面上的物理吸附,引起粘附强度下降,产生金属胶接头的界面粘附破坏。这主要是由于极性很大的水分子在金属氧化物表面的吸附功比胶粘剂分子的吸附功大。两者差值越大,解吸附作用的能力越强。例如、以物理吸附为主的环氧尼龙胶如此。 (2)水对胶层的作用:另外,有人认为,水的主要作用发生在被粘表面影响的胶粘剂边界层中,水分子能够渗入聚合物本体,破坏聚合物分子之间的氢键和其他次价键(化学水解),使聚合物胶层发生物理增塑作用,导致高温胶接强度下降。因为水渗入胶层常降低胶层的热变形温度。这种变化是可逆的,除水后性能恢复。 水还可以断裂高分子链,引起聚合物的化学将解作用。这种变化是不可逆的。 B、应力存在的作用 水对胶粘剂的影响:(1)水对胶接界面的解吸附;(2)水对胶层的化学将解和物理增塑;(3)水和氧气同时存在引起金属被粘表面的电化学腐蚀;(4)水使空气的腐蚀性气体如N2O4,SO2对接头产生加速地破坏作用;(5)水对接头界面的应力集中起促进作用。因此英里存在是金属胶接头大气老化的主要原因之一。 即使没有其他环境因素的影响,外应力和内应力(如收缩应力和热应力)的结合,可使胶接头发生蠕变破坏。在应力存在下进行老化,内应力无论在胶 接界面还是在胶层中产生的裂缝都有利于介质(尤其是水)的进一步渗透;而水的浸入又能促进裂缝原者垂直于应力方向进一步增长,使应力减弱。应力和环境介质的互相促进作用力大大加速胶接头的老化,此即为“应力腐蚀开裂”。C、金属表面的电化学腐蚀 氧和水同时存在是发生电化学腐蚀作用的首要条件。这种电化学腐蚀发生在金属表面与胶粘剂接面上,如将引起胶接头的粘附强度迅速下降。 1.2 金属接头的热老化机理 一般来说,被粘金属在高温下的稳定性要比有机胶粘剂好得多,因此金属胶接头的热老化主要是胶粘剂的热老化。 A、胶粘剂的热老化机理: 胶粘剂遇热产生两种变化:1、物理变化,为可逆反应。线形热塑性胶 软化和熔融,而交联热固性胶产生较大变形;2、化学变化,为不可逆反应,主要表现为热分解和氧化分解。这是胶粘剂热老化的主要原因。 表征这些变化的主要温度参数是玻璃化温度(Tg)、热变形温度(HDT)、熔点(Tm)和分解温度(Td)等。当胶粘剂受热超过Tg和HDT是,力学强度显著降低;当受热温度达到Tm或Td,则胶粘剂永久破坏而不能使用。 经实验证明,氧对胶粘剂的分解远比热分解严重。因为氧首先氧化分子链中易被氧化的化学键,生成的过氧化物分解为自由基,引起自由基连锁分解反应。 B、 金属被粘物表面处理对胶粘剂热老化的影响。 由于在被粘物表面的过渡元素如下:Fe,Cu,CO,的氧化物或离子对胶粘剂的氧化分解起到催化作用,导致胶粘剂热老化加速。其机理如下(以CU2+为例):R-O-O-H+CU2+R-O-O+CU+H+ R-O-O-H+CU+R-O+ CU2+OH- 金属离子与有机过氧化物发生氧化还原反应,降低了过氧化物的分解活化能。 1、3 提高金属胶接头的老化性能的途径。 A、 提高耐大气老化的途径 胶粘剂本体具有很好的耐水性是改善胶接头耐大气老化性能的先决条件。增加胶粘剂本体交联密度可以减小胶层的吸水率,但交联密度太大常引起脆性增加,降低胶层抗裂缝增长的能力。如果加入适量增韧剂,可增加韧性和抵抗裂缝增长的能力,从而提高胶接头的耐大气老化性能,但弹性体的加入使交联密度降低。 采用有机硅氧烷偶联剂可以增加胶头的胶接强度,提高接头的耐老化性能。 B、 提高耐热老化的途径在高分子主链中减少易氧化化学键如碳氢键、多键位上的C-H,增加高聚物的氧化稳定性。 2、 木材、塑料和橡胶胶接头的老化2.1 木材胶接头的老化 A、木材胶接头老化机理 环境温度产生的热应力和水的降解是木材老化的主要原因,尤其是水解的影响最大。 B、影响木材胶接头老化的因素 胶粘剂、木材质量和加工性能影响到木材胶接头老化。而胶层厚度越大,胶合板耐老化性能越好。 2.2 塑料橡胶胶接头的老化 塑料橡胶的表面是疏水性的,水难以渗透到胶 接界面里,因此其老化性能稳定得多。 3、人工加速老化实验发3.1、恒温水浸实验 在沸水浸泡和250C水浸一定时间后测其胶接强度。 3.2、高低温周期交变实验 选定一个低温和高温,在此温变范围内升降温度,控制升降温度的速度,测试胶接头的强度。l 粘接机理-影响粘接物理强度的物理因素 1.表面粗糙度: 当胶粘剂良好地浸润被粘材料表面时(接触角90),表面的粗糙化就不利于粘接强度的提高。 2.表面处理: 粘接前的表面处理是粘接成功的关键,其目的是能获得牢固耐久的接头。由于被粘材料存在氧化层(如锈蚀)、镀铬层、磷化层、脱模剂等形成的“弱边界层”,被粘物的表面处理将影响粘接强度。例如,聚乙烯表面可用热铬酸氧化处理而改善粘接强度,加热到70-80oC时处理1-5分钟,就会得到良好的可粘接表面,这种方法适用于聚乙烯板、厚壁管、等。而聚乙烯薄膜用铬酸处理时,只能在常温下进行。如在上述温度下进行,则薄膜的表面处理,采用等离子或微火焰处理。 对天然橡胶、丁苯橡胶、丁腈橡胶和氯丁橡胶表面用浓硫酸处理时,希望橡胶表面轻度氧化,故在涂酸后较短的时间,就要将硫酸彻底洗掉。过度的氧化反而在橡胶表面留下更多的脆弱结构,不利于粘接。 对硫化橡胶表面局部粘接时,表面处理除去脱膜剂,不宜采用大量溶剂洗涤,以免不脱膜剂扩散到处理面上妨碍粘接。 铝及铝合金的表面处理,希望铝表面生成氧化铝结晶,而自然氧化的铝表面是十分不规则的、相当疏松的氧化铝层,不利于粘接。所以,需要除去自然氧化铝层。但过度的氧化会在粘接接头中留下薄弱层。 3.渗透: 已粘接的接头,受环境气氛的作用,常常被渗进一些其他低分子。例如,接头在潮湿环境或水下,水分子渗透入胶层;聚合物胶层在有机溶剂中,溶剂分子渗透入聚合物中。低分子的透入首先使胶层变形,然后进入胶层与被粘物界面。使胶层强度降低,从而导致粘接的破坏。 渗透不仅从胶层边沿开始,对于多孔性被粘物,低分子物还可以从被粘物的空隙、毛细管或裂缝中渗透到被粘物中,进而侵入到界面上,使接头出现缺陷乃至破坏。 渗透不仅会导致接头的物理性能下降,而且由于低分子物的渗透使界面发生化学变化,生成不利于粘接的锈蚀区,使粘接完全失效。 4.迁移: 含有增塑剂被粘材料,由于这些小分子物与聚合物大分子的相容性较差,容易从聚合物表层或界面上迁移出来。迁移出的小分子若聚集在界面上就会妨碍胶粘剂与被粘材料的粘接,造成粘接失效。 5.压力: 在粘接时,向粘接面施以压力,使胶粘剂更容易充满被粘体表面上的坑洞,甚至流入深孔和毛细管中,减少粘接缺陷。对于粘度较小的胶粘剂,加压时会过度地流淌,造成缺胶。因此,应待粘度较大时再施加压力,也促使被粘体表面上的气体逸出,减少粘接区的气孔。 对于较稠的或固体的胶粘剂,在粘接时施加压力是必不可少的手段。在这种情况下,常常需要适当地升高温度,以降低胶粘剂的稠度或使胶粘剂液化。例如,绝缘层压板的制造、飞机旋翼的成型都是在加热加压下进行。 为了获得较高的粘接强度,对不同的胶粘剂应考虑施以不同的压力。一般对固体或高粘度的胶粘剂施高的压力,而对低粘度的胶粘剂施低的压力。 6.胶层厚度: 较厚的胶层易产生气泡、缺陷和早期断裂,因此应使胶层尽可能薄一些,以获得较高的粘接强度。另外,厚胶层在受热后的热膨胀在界面区所造成的热应力也较大,更容易引起接头破坏。 7.负荷应力: 在实际的接头上作用的应力是复杂的,包括剪切应力、剥离应力和交变应力。 (1) 切应力:由于偏心的张力作用,在粘接端头出现应力集中,除剪切力外,还存在着与界面方向一致的拉伸力和与界面方向垂直的撕裂力。此时,接头在剪切应力作用下,被粘物的厚度越大,接头的强度则越大。 (2) 剥离应力:被粘物为软质材料时,将发生剥离应力的作用。这时,在界面上有拉伸应力和剪切应力作用,力集中于胶粘剂与被粘物的粘接界面上,因此接头很容易破坏。 由于剥离应力的破坏性很大,在设计时尽量避免采用会产生剥离应力的接头方式。 (3) 交变应力:在接头上胶粘剂因交变应力而逐渐疲劳,在远低于静应力值的条件下破坏。强韧的、弹性的胶粘剂(如某些橡胶态胶粘剂)耐疲性能良好。 8.内应力: (1) 收缩应力:当胶粘剂固化时,因挥发、冷却和化学反应而体积发生收缩,引起收缩应力。当收缩力超过粘附力时, 表观粘接强度就要显著降。 此外,粘接端部或胶粘剂的空隙周围应力分布不均匀,也产生应力集中,增加了裂口出现的可能。有结晶性的胶粘剂在固化时,因结晶而使体积收缩较大,也造成接头的内应力。如在其中加入一定量能结晶或改变结晶大小的橡胶态物质,那么就可以减少内应力。 在热固性树脂胶中加增韧剂是一个最好的说明。例如酚醛-缩醛胶,当缩醛含量低于40%时,接头发生单纯界面破坏;而在40%以上时则为内聚破坏,粘接强度明显增强。(2) 热应力:在高温下,熔融的树脂冷却固化时,会产生体积收缩,在界面上由于粘接的约束而产生内应力。在分子链间有滑移的可能性时,则产生的内应力消失。 影响热应力的主要因素有热膨胀系数、室温和Tg间的温差以及弹性差量。 为了缓和因热膨胀系数差而引起的热应力,应使胶粘剂的热膨胀系数接近于被粘物的热膨胀系数,加填料是一种好办法,可添加该种材料的粉末、或其化材料的纤维或粉末。 各种材料的线膨胀系数() 热塑性树脂在在Tg以下约为710-5/c,在Tg以上约为210-4/c - 胶粘剂 被粘物l 粘接机理-影响粘接性能的环境因素粘接接头必须承受外力的作用,也要经受使用环境因素的考验,如温度、湿度、化学介质、户外气候等都会影响粘接强度。胶粘剂如果在恶劣环境下使用,应该做环境的模拟试验,ASTM标准环境试验方法有: ASTM D896; ASTM D2295; ASTM D1151; ASTM D2557; ASTM D1828; ASTM D4299; ASTM D1829; ASTM D4300。 胶粘剂在两种曝露条件下的老化实验有: (1) 典型的实验室加速老化; (2) 典型的大气老化。 有人认为工加速老化试验能排列胶粘剂的耐水性和环境对内聚强度影响的顺序。然而,通常的户外大气老化试验是以金属界面耐腐蚀能力排列胶粘剂顺序的3。 1.高温 所有曝露于高温环境下的聚合物,都会发生某种程度的降解,经高温试验后,力学性能降低。在热老化时,力学性能也有降低。最新研制的一些聚合物胶粘剂,能耐260-310C的高温。 对于耐高温的胶粘剂来说,熔点或软化点一定要高,且应抗氧化。热塑性胶粘剂室温下能获得良好的粘接效果,然而,一旦使用温度达到胶粘剂的玻璃化温度,就会造成胶层变形,使内聚合强度降低。热固性胶粘剂没有熔点,由大分子高度交联的网络构成,多数都适合在高温下使用。热固化的关键问题是因热氧化和高温分解引起的强度降低速率1。 耐高温胶粘剂通常具有刚性的高分子结构,很高的软化温度和稳定的化学基团。这些都给粘接工艺带来困难。故只有为数不多的热固性胶粘剂能在177C高温下长期使用1。 11 环氧树脂类 环氧树脂胶粘剂一般仅适用于121C以下的温度,有些能在260C下短期工作,有的可在149-260C下长期使用。这些胶粘剂是在其中加入热稳定性的环氧树脂或高温固化剂,专门为高温环境配制的。耐高温的环氧树脂是酚醛环氧树脂,由于兼具了酚醛树脂优良的热稳定性与环氧树脂良好的粘附性,而使胶粘剂能在371C下短期工作,在177C下连续使用1。 酸酐固化剂要比其他环氧固化剂使未改性环氧树脂胶粘剂有更好的高温稳定性,例如苯酐、均苯四甲酸酐和氯茵酸酐会使环氧胶有较大的交联度,因而短期可耐高温232C,但承受长期热疲劳却只能耐149C1。 环氧树脂胶粘剂的优点是固化温度低,固化时无挥发物放出,价格低廉,配方多样,用途广泛,耐高温的胶粘剂虽然无上述优点,但却有益于改善耐热性能。 12 改性酚醛类 (1) 丁腈酚醛 在一般的改性类酚醛胶粘剂中,丁腈酚醛具有最好的耐高温性能,在121-177C时有较高的剪切强度,高温老化时的强度保留率很高。丁腈酚醛胶粘剂的韧性很好,剥离强度很高,这种胶粘剂可制成胶液和有载体或载代表的胶膜使用。 (2) 环氧酚醛 这类胶粘剂大部分用于军事上,设计使用温度为149-260C,但环氧酚醛和丁腈酚醛类胶粘剂都不能于177C下固化,因为会放出气体而发泡,故推荐在93C下固化24h.。 13 聚砜 这是一种高温热熔的热塑性塑料,已被用作胶粘剂。聚砜能与金属粘合,软化点高,热稳定性好,热变形温度为174C,二级玻璃化转变温度193C,弯曲模量在较宽的温度范围内不变。聚砜胶粘剂以干颗粒状供应,粘接金属金属的接头有很高的剥离强度和剪切强度。在高达193C时聚砜保持着结构的完整性,在149C时其强度保留率为室温剪切强度的60%以上,并有相当时间,只要能产生足够的热量充分浸润被粘物即可。聚砜热熔胶粘接包层铝合金、不锈钢和冷轧钢的效果很好。在粘接之前,必须进行认真的表面处理,这很重要。 对于不涂底胶的铝材,需要371C才能使聚砜完全流动浸润被粘物,在此温度下加压(0.6Mpa)5min,接头的拉伸剪切强度高于20.7Mpa。在371C用聚砜粘接不锈钢也能获得良好的粘接效果,剪切强度高于27.6Mpa。粘接碳钢和铝时,先用510%的聚砜溶液,以喷涂或流涂方法底涂,再于260C下烘烤10min后,将涂有底胶的两金属面压紧1min,会获得令人满意的粘接效果6。 聚砜热胶粘剂粘接包层铝合金(0.0050.076mm) 温度对拉伸剪切强度的影响- 试验温度(C) 拉伸剪切强度(Mpa)- -54 22.8 25 24.1 82 18.6 149 15.2 177 13.4 204 3.6 14 有机硅 有机硅胶粘剂具有优良的热稳定性,但强度较低,主要用于非机构型粘接,如高温压敏胶带。有人试图将有机硅加入到其他胶粘剂中如环氧和酚醛,却因固化时间较长,强度较低,而限制了应用1。有机硅胶粘剂/密封剂连续工作的最高温度为260C,间断工作可达316C,这与所用的胶粘剂类型有关。 15 芳杂环聚合物 聚芳酯、聚酰苯并咪唑、聚喹恶啉比任何常用的胶粘剂都有更高的耐热性,分子链的刚性减少了因热变化引起化学链断裂的可能性,芳杂环的结构使键离解能提高。 (1) 聚酰亚胺 聚酰亚胺胶粘剂短期曝露于538C高温时的强度保留率比环氧酚醛略高,然而在温度高于260C时,聚酰亚胺胶粘剂的热疲劳是其他常规胶粘剂无与伦比的。聚酰亚胺胶粘剂通常是以玻璃纤维增强的胶膜供应,贮存期有限。为了获得最佳的粘接效果,必须在260-316C温度、0.101.4Mpa压力下固化90min。在固化过程中,高沸点挥发物释放引起胶层多孔。由于聚酰亚胺固有的刚性,致使剥离强度较低。 (2)聚苯并咪唑(PBI) 这类胶粘剂高温短期工作性能最佳,但氧化很快,因此不要在高于232C下连续工作。聚苯并咪唑胶粘剂要求在316C下固化,由于固化时放出挥发物(苯酚和水),导致大面积粘接的多孔性。这类胶粘剂尽管工艺上很困难,还是能获得良好的粘接强度。 聚苯并咪唑胶粘剂常以玻璃纤维增强的胶膜供应,价格昂贵。由于需要在高温下较长的固化时间,因而限制了它的应用。近20年来,基本上没有报道聚苯并咪唑新的胶粘剂研究工作。 (3) 聚喹恶啉(PQ) 聚喹恶啉为非晶态聚合物,能溶于间甲酚类溶剂,固含量20%的胶液均可使载体浸润。以非晶体态硼填充的PQ在371C和538C能得到高的粘接强度。由硼酸填充的PQ胶膜(玻璃纤维载体)粘接不锈钢,在1.4Mpa压力下分别在344C 、426C和455C下各恒温1h。所测得的拉伸剪切强度371C时为17.8Mpa,538C时为9.3Mpa。P Q还没有商品供应,故限制了它的发展。 (4)聚苯基喹恶啉(PPQ) PPQ有更好的溶解性、加工性和热氧化稳定性。粘接钛可在232C下长期使用,8000h后拉伸剪切强度为23.5Mpa。PPQ是很好的高温结构胶粘剂,可惜,目前也没有商品供应。 2.低温和深冷 当温度从室温降至-253C时,剪切强度超过6.89Mpa的胶粘剂定义为超低温胶粘剂。带有深冷液体燃料的宇宙飞船,穿过外层空间重新返回地球大气层时,其速度大于3马赫,胶粘剂经受的温度从-253C升到816C。 超低温胶粘剂主要用于金属和非金属与其外部绝缘体的粘接,也可作为密封剂使用,多数翼型结构的油箱和耐压型舱壁都是用胶粘剂密封的。室温硫化(RTV)苯基硅橡胶,被确认为能在超低温下使用的密封剂和胶粘剂。实践表明,RTV硅橡胶在高温(316C)短期工作是很有用途的,较好的超低温胶粘剂才能耐受如此高温。 超低温条件下的接头存在许多问题都是接头内产生应力集中和应力梯度的结果,接头应力集中的因素很多,而超低温又加剧了应力集中,引起应力集中的主要原因是: (1) 胶粘剂与被粘物的热膨胀系数不同; (2) 固化时胶粘剂的体积收缩; (3) 胶接时包住或放出气体; (4) 胶粘剂与被粘物的弹性模量和剪切强度的差异; (5) 粘接施加压力卸除后,被粘物保留的残余应力; (6) 胶粘剂或被粘物的非弹性; (7) 胶粘剂或被粘物的塑性; 在室温下低模量的胶粘剂容易变形,因而能减缓应力集中,但在超低温时,弹性模量大到某一值后,胶粘剂不能再有效地减缓应力集中(弹性模量一般随温度降低而增加)。为了得到较稳定的力学性能,应采取适当措施,使胶粘剂与被粘物的热膨胀系数相接近。在超低温时,导热性对减少瞬时应力起重要作用,减薄胶层和提高导热性能,可减少瞬时应力。 聚氨酯是最好的一种超低温胶粘剂,目前使用的室温固化聚氨酯胶粘剂在-253C时的剪切和拉伸强度以及剥离强度和冲击性能都比早期的聚氨酯好,这种情况与多数结构胶粘剂恰好相反。聚氨酯胶粘剂在-253C时强度增加,而在室温和高温下却降低。超低温胶粘剂在液态氢温度和室温下的强度比较列于表98。 超低温胶粘剂在液态氢和室温下的强度比较 胶粘剂类型 拉伸剪切强度(Mpa) T剥离强度(N/M) -253C 室温 -253C 室温 聚氨酯 51.7 10.3 12260 35027004 尼龙环氧胶模 24.8 34.5 700 18200 3 未改性环氧树脂粘接强度虽然很高,但在低温下变脆,相应的剥离强度和冲击强度很低。环氧-酚醛的低温强度和高温性能都相当好。环氧-尼龙低温强度很高,这是因为尼龙的柔性赋予环氧较高的剥离强度,使体系具有非凡的低温性能。环氧-聚酰胺容易混合,使用方便,适用期长,室温固化,胶层柔韧,但低温性能不如环氧-尼龙。酚醛缩醛胶粘剂有载体或无载体的胶膜、溶液和粉末各种类型,具有较高的低温强度,但因热塑性塑料的弹性模量随温度降低而增加,致使其强度随温度降低而减小9。 橡胶改性酚醛(弹性体酚醛胶粘剂因剥离强度高,很有使用价值,但剪切强度相对低些,丁脂酚醛便是其中一种。聚氨酯胶粘剂对多数被粘物都有相当好的粘接性,加之固有的低温柔顺性,故在低温下剥离强度也相当高。上述环氧尼龙胶粘剂在73c的低温范围,其强度比其他任何低温胶粘剂都高(见图91)。在液氮温度(196C)时,聚氨酯和环氧-尼龙的剪切强度相差很小,而在液态氢温度(253c)下,新型聚氨酯胶粘剂的剪切强度则超过环氧-尼龙9。 3.湿气和浸水1 湿
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论