江西省赣州市会昌县九年级数学上学期期中试题(含解析) 新人教版.doc_第1页
江西省赣州市会昌县九年级数学上学期期中试题(含解析) 新人教版.doc_第2页
江西省赣州市会昌县九年级数学上学期期中试题(含解析) 新人教版.doc_第3页
江西省赣州市会昌县九年级数学上学期期中试题(含解析) 新人教版.doc_第4页
江西省赣州市会昌县九年级数学上学期期中试题(含解析) 新人教版.doc_第5页
免费预览已结束,剩余12页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省赣州市会昌县2016届九年级数学上学期期中试题一、选择题(本大题共6小题,每小题3分,共18分)1一元二次方程x2+3xa=0的一个根为1,则另一个根为( )a2b2c4d32下列图形中,既是轴对称图形又是中心对称图形的是( )abcd3已知关于x的方程x22x+3k=0有两个不相等的实数根,则k的取值范围是( )akbkck且k0dk且k04二次函数图象如图所示,则其解析式是( )ay=x2+2x+4by=x2+2x+4cy=x22x+4dy=x2+2x+35已知二次函数y=ax2+bx+c(a0)的图象如图,且关于x的一元二次方程ax2+bx+cm=0没有实数根,有下列结论:b24ac0;abc0;m2其中,正确结论的个数是( )a0b1c2d36如图,正方形oabc的两边oa、oc分别在x轴、y轴上,点d(5,3)在边ab上,以c为中心,把cdb旋转90,则旋转后点d的对应点d的坐标是( )a(2,10)b(2,0)c(2,10)或(2,0)d(10,2)或(2,0)二、填空题(本大题共8小题,每小题3分,共24分)7写出一个根为0和1的一元二次方程_8把二次函数y=x2+2x1化为y=a(x+m)2+n的形式:_9已知m,n是一元二次方程x2+x1=0的两个根,则m2+2m+n等于_10抛物线y=2x2+4x+1向下平移一个长度单位后,所得的抛物线的解析式为_11二次函数y=(x+1)2+2的图象的对称轴是_12我们解方程3x26x=0时,可以运用因式分解法,将此方程化为3x(x2)=0,从而得到两个一元一次方程:3x=0或x2=0,进而得到原方程的解为x1=0,x2=2这种解法体现的数学思想是:_13如图,将等边abc绕顶点a顺时针方向旋转,使边ab与ac重合得acd,bc的中点e的对应点为f,则eaf的度数是_14如图,将abc绕点p顺时针旋转90得到abc,则点p的坐标是_三、解答题(本题8分)15严格按照画函数图象的步骤,准确画出抛物线y=x22x+3四、解答题(本大题5+5+10=20分)16解方程(1)x2+4x+3=0(2)3x(x2)=2(x2)17一个二次函数的图象经过(0,1),(2,0),(,0)三点,求这个二次函数的解析式五、解答题(每小题10分,共50分)18在下列网格图中,每个小正方形的边长均为1个单位在rtabc中,c=90,ac=3,bc=4(1)试在图中做出abc以a为旋转中心,沿顺时针方向旋转90后的图形ab1c1;(2)若点b的坐标为(3,5),试在图中画出直角坐标系,并标出a、c两点的坐标;(3)根据(2)的坐标系作出与abc关于原点对称的图形a2b2c2,并标出b2、c2两点的坐标19 如图,边长为1的正方形abcd(1)画图:将正方形abcd绕点a逆时针旋转45后得到正方形ab1c1d1,边b1c1与cd交于点o;(2)求四边形ab1od的面积20如图,abc=90,p为射线bc上任意一点(点p和点b不重合),分别以ab、ap为边在abc的内部作等边abe和apq,连结qe并延长交bp于点f补全图形,并求证:bf=ef21现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?22如图,在平面直角坐标系xoy中,二次函数y=ax2+bx4(a0)的图象与x轴交于a(2,0)、c(8,0)两点,与y轴交于点b,其对称轴与x轴交于点d(1)求该二次函数的解析式;(2)如图1,连结bc,在线段bc上是否存在点e,使得cde为等腰三角形?若存在,求出所有符合条件的点e的坐标;若不存在,请说明理由2015-2016学年江西省赣州市会昌县九年级(上)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1一元二次方程x2+3xa=0的一个根为1,则另一个根为( )a2b2c4d3【考点】根与系数的关系 【分析】根据一元二次方程根与系数的关系x1+x2=求另一个根即可【解答】解:设x1、x2是关于x的一元二次方程x2+3xa=0的两个根,则x1+x2=3,又x2=1,解得:x1=2即方程的另一个根是2故选:a【点评】本题主要考查了一元二次方程根与系数的关系,在利用根与系数的关系x1+x2=、x1x2=时,要注意等式中的a、b、c所表示的含义2下列图形中,既是轴对称图形又是中心对称图形的是( )abcd【考点】中心对称图形;轴对称图形 【分析】根据轴对称图形与中心对称图形的概念求解【解答】解:a、既是轴对称图形,也是中心对称图形,符合题意;b、是轴对称图形,不是中心对称图形,不符合题意;c、不是轴对称图形,是中心对称图形,不符合题意;d、是轴对称图形,不是中心对称图形,不符合题意故选:a【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合3已知关于x的方程x22x+3k=0有两个不相等的实数根,则k的取值范围是( )akbkck且k0dk且k0【考点】根的判别式 【专题】计算题【分析】根据方程有两个不相等的实数根,得到根的判别式大于0,即可求出k的范围【解答】解:方程x22x+3k=0有两个不相等的实数根,=412k0,解得:k故选a【点评】此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键4二次函数图象如图所示,则其解析式是( )ay=x2+2x+4by=x2+2x+4cy=x22x+4dy=x2+2x+3【考点】待定系数法求二次函数解析式 【专题】计算题【分析】根据二次函数的性质,观察函数图象,利用开口方向可淘汰b,利用对称性可淘汰c,利用抛物线与y轴的交点坐标可淘汰d,从而得到a为正确选项【解答】解:抛物线开口向下,a0,所以b选项错误;抛物线的对称轴在y轴的右侧,x=0,b0,所以c选项错误;抛物线与y轴的交点为(0,4),c=4,所以d选项错误故选a【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解5已知二次函数y=ax2+bx+c(a0)的图象如图,且关于x的一元二次方程ax2+bx+cm=0没有实数根,有下列结论:b24ac0;abc0;m2其中,正确结论的个数是( )a0b1c2d3【考点】二次函数图象与系数的关系 【分析】由二次函数y=ax2+bx+c与x轴有2个交点,可得b24ac0;由抛物线开口方向、对称轴、抛物线与y轴的交点,可判定a,b,c的符号,继而判定abc0;由关于x的一元二次方程ax2+bx+cm=0没有实数根,可得直线y=m与抛物线无交点,继而求得答案【解答】解:二次函数y=ax2+bx+c与x轴有2个交点,b24ac0;故正确;开口向下,a0,对称轴在y轴右侧,b0,抛物线与y轴交于正半轴,c0,abc0,故正确;关于x的一元二次方程ax2+bx+cm=0没有实数根,即直线y=m与抛物线无交点,m2,故正确故选d【点评】此题考查了二次函数的图象与系数的关系注意二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点以及抛物线与x轴交点的个数确定6如图,正方形oabc的两边oa、oc分别在x轴、y轴上,点d(5,3)在边ab上,以c为中心,把cdb旋转90,则旋转后点d的对应点d的坐标是( )a(2,10)b(2,0)c(2,10)或(2,0)d(10,2)或(2,0)【考点】坐标与图形变化-旋转 【专题】分类讨论【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可【解答】解:点d(5,3)在边ab上,bc=5,bd=53=2,若顺时针旋转,则点d在x轴上,od=2,所以,d(2,0),若逆时针旋转,则点d到x轴的距离为10,到y轴的距离为2,所以,d(2,10),综上所述,点d的坐标为(2,10)或(2,0)故选:c【点评】本题考查了坐标与图形变化旋转,正方形的性质,难点在于分情况讨论二、填空题(本大题共8小题,每小题3分,共24分)7写出一个根为0和1的一元二次方程x2x=0【考点】根与系数的关系 【专题】开放型【分析】先根据1+0=1,10=0,然后根据根与系数的关系写出满足条件的一个一元二次方程【解答】解:1+0=1,10=0,以1和0的一元二次方程可为x2x=0故答案为:x2x=0【点评】本题考查了一元二次方程ax2+bx+c=0(a0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=,x1x2=8把二次函数y=x2+2x1化为y=a(x+m)2+n的形式:y=(x+1)22【考点】二次函数的三种形式 【分析】运用配方法把原式化为顶点式即可【解答】解:y=x2+2x1=(x+1)22故答案为:y=(x+1)22【点评】本题考查的是二次函数的三种形式,正确运用配方法把一般式化为顶点式是解题的关键9已知m,n是一元二次方程x2+x1=0的两个根,则m2+2m+n等于0【考点】根与系数的关系;一元二次方程的解 【分析】由于m、n是一元二次方程x2+3x7=0的两个根,根据根与系数的关系可得m+n=1,mn=1,而m是方程的一个根,可得m2+m1=0,即m2+m=1,那么m2+2m+n=m2+m+m+n,再把m2+3m、m+n的值整体代入计算即可【解答】解:m、n是一元二次方程x2+x1=0的两个根,m+n=1,mn=1,m是x2+x1=0的一个根,m2+m1=0,m2+m=1,m2+2m+n=m2+m+m+n=1+(m+n)=11=0故答案为:0【点评】本题考查了根与系数的关系,解题的关键是熟练掌握一元二次方程ax2+bx+c=0(a0)两根x1、x2之间的关系:x1+x2=,x1x2=10抛物线y=2x2+4x+1向下平移一个长度单位后,所得的抛物线的解析式为y=2x2+4x【考点】二次函数图象与几何变换 【分析】根据“上加下减”的原则进行解答即可【解答】解:根据“上加下减”的原则可知,把抛物线y=2x2+4x+1向下平移一个长度单位所得到的抛物线解析式y=2x2+4x+11,即y=2x2+4x故答案为:y=2x2+4x【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键11二次函数y=(x+1)2+2的图象的对称轴是x=1【考点】二次函数的性质 【分析】根据顶点式y=a(xh)2+k的对称轴为x=h,直接写出其对称轴即可【解答】解:二次函数y=(x+2)2+2,是顶点式,对称轴为:x=1故答案为:x=1【点评】本题考查了二次函数的性质,比较简单,牢记顶点式即可12我们解方程3x26x=0时,可以运用因式分解法,将此方程化为3x(x2)=0,从而得到两个一元一次方程:3x=0或x2=0,进而得到原方程的解为x1=0,x2=2这种解法体现的数学思想是:因式分解法【考点】解一元二次方程-因式分解法 【分析】解一元二次方程的方法有:直接开平方法,因式分解法,公式法,配方法,再根据解方程的方法逐个进行判断即可【解答】解:这种解一元二次方程的方法叫因式分解法,故答案为:因式分解法【点评】本题考查了解一元二次方程的应用,能选择适当的方法解一元二次方程是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,因式分解法,公式法,配方法13如图,将等边abc绕顶点a顺时针方向旋转,使边ab与ac重合得acd,bc的中点e的对应点为f,则eaf的度数是60【考点】旋转的性质;等边三角形的性质 【专题】计算题【分析】根据等边三角形的性质以及旋转的性质得出旋转角,进而得出eaf的度数【解答】解:将等边abc绕顶点a顺时针方向旋转,使边ab与ac重合得acd,bc的中点e的对应点为f,旋转角为60,e,f是对应点,则eaf的度数为:60故答案为:60【点评】此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键14如图,将abc绕点p顺时针旋转90得到abc,则点p的坐标是(1,2)【考点】坐标与图形变化-旋转 【分析】先根据旋转的性质得到点a的对应点为点a,点b的对应点为点b,再根据旋转的性质得到旋转中心在线段aa的垂直平分线,也在线段bb的垂直平分线,即两垂直平分线的交点为旋转中心【解答】解:将abc以某点为旋转中心,顺时针旋转90得到abc,点a的对应点为点a,点c的对应点为点c,作线段aa和cc的垂直平分线,它们的交点为p(1,2),旋转中心的坐标为(1,2)故答案为:(1,2)【点评】本题考查了坐标与图形变化旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标常见的是旋转特殊角度如:30,45,60,90,180三、解答题(本题8分)15严格按照画函数图象的步骤,准确画出抛物线y=x22x+3【考点】二次函数的图象 【分析】先把解析式配成y=(x+1)2+4,再在对称轴左右两边取自变量的值进行列表,然后描点、连线即可【解答】解:y=x22x+3=(x+1)2+4,列表得:x32101y03430描点,连线,如图:【点评】本题考查了函数图象的作法,解题的关键是确定其对称轴及顶点坐标四、解答题(本大题5+5+10=20分)16解方程(1)x2+4x+3=0(2)3x(x2)=2(x2)【考点】解一元二次方程-因式分解法 【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可【解答】解:(1)x2+4x+3=0(x+1)(x+3)=0,x+1=0,x+3=0,z1=1,x2=3;(2)3x(x2)=2(x2)3x(x2)2(x2)=0,(x2)(3x2)=0,x2=0,3x2=0,z1=2,x2=【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键,注意:解一元二次方程的方法有:直接开平方法,因式分解法,公式法,配方法17一个二次函数的图象经过(0,1),(2,0),(,0)三点,求这个二次函数的解析式【考点】待定系数法求二次函数解析式 【专题】计算题【分析】由于已知抛物线与x轴的交点坐标,则可设交点式y=a(x+2)(x),然后把(0,1)代入求出a的值即可【解答】解:设抛物线解析式为y=a(x+2)(x),把(0,1)代入得a2()=1,解得a=1所以抛物线解析式为y=(x+2)(x),即y=x2+x1【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解五、解答题(每小题10分,共50分)18在下列网格图中,每个小正方形的边长均为1个单位在rtabc中,c=90,ac=3,bc=4(1)试在图中做出abc以a为旋转中心,沿顺时针方向旋转90后的图形ab1c1;(2)若点b的坐标为(3,5),试在图中画出直角坐标系,并标出a、c两点的坐标;(3)根据(2)的坐标系作出与abc关于原点对称的图形a2b2c2,并标出b2、c2两点的坐标【考点】作图-旋转变换 【专题】作图题【分析】(1)根据网格结构找出点b、c的对应点b1、c1的位置,然后与点a顺次连接即可;(2)以点b向右3个单位,向下5个单位为坐标原点建立平面直角坐标系,然后写出点a、c的坐标即可;(3)根据网格结构找出点a、b、c关于原点的对称点a2、b2、c2的位置,然后顺次连接即可【解答】解:(1)ab1c1如图所示;(2)如图所示,a(0,1),c(3,1);(3)a2b2c2如图所示,b2(3,5),c2(3,1)【点评】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键19 如图,边长为1的正方形abcd(1)画图:将正方形abcd绕点a逆时针旋转45后得到正方形ab1c1d1,边b1c1与cd交于点o;(2)求四边形ab1od的面积【考点】作图-旋转变换 【专题】计算题;作图题【分析】(1)根据正方形的性质和旋转的性质,b点的对应点b1在ac上,c点的对应点c1在ad的延长线上,然后画出d点的对应点d1即可得到正方形ab1c1d1;(2)根据正方形的性质得ab=1,ac=,cab=45,dca=45,b=90,再根据旋转的性质得b1ab=45,ab1=ab=1,ab1c1=b=90,于是可判断点b1在ac上,ob1c为等腰直角三角形,所以cb1=acab1=1,然后利用四边形ab1od的面积=sadcsob1c进行计算即可【解答】解:(1)如图,正方形ab1c1d1为所作;(2)四边形abcd为边长为1的正方形,ab=1,ac=,cab=45,dca=45,b=90,正方形abcd绕点a逆时针旋转45后得到正方形ab1c1d1,b1ab=45,ab1=ab=1,ab1c1=b=90,点b1在ac上,ob1c为等腰直角三角形,cb1=acab1=1,sob1c=(1)2=,四边形ab1od的面积=sadcsob1c=11=1【点评】本题考查了作图旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形也考查了正方形的性质20如图,abc=90,p为射线bc上任意一点(点p和点b不重合),分别以ab、ap为边在abc的内部作等边abe和apq,连结qe并延长交bp于点f补全图形,并求证:bf=ef【考点】全等三角形的判定与性质 【分析】根据等边三角形的性质可以得出ab=ae,ap=aq,由等式的性质就可以得出bap=eaq,就可以得出abpaeq,根据全等得出abp=aeq=90,进而可以得出fbe=feb=30,就可以得出ef=bf【解答】证明:如图所示:abe和apq是等边三角形,ab=ae,ap=aq,bae=paq=abe=aeb=60,baepae=paqpae,bap=eaq在qae和pab中,qaepab(sas),abp=aeq=90aef=90,abp=aefabpaeb=aefabe,bef=ebf,bf=ef【点评】本题考查了等边三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键21现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【考点】一元二次方程的应用;一元一次不等式的应用 【专题】增长率问题【分析】(1)设该快递公司投递总件数的月平均增长率为x,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数【解答】解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=2.1(不合题意舍去)答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1(1+10%)=13.31(万件)平均每人每月最多可投递0.6万件,21名快递投递业务员能完成的快递投递任务是:0.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论