


免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教学资料参考中考数学重难点专题讲座第十讲阅读理解题专题- 1 -请阅读下列材料问题:如图1,在等边三角形ABC内有一点P,且PA=2, PB=, PC=1求BPC度数的大小和等边三角形ABC的边长李明同学的思路是:将BPC绕点B顺时针旋转60,画出旋转后的图形(如图2)连接PP,可得PPB是等边三角形,而PPA又是直角三角形(由勾股定理的逆定理可证)所以APC=150,而BPC=APC=150进而求出等边ABC的边长为问题得到解决请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=,BP=,PC=1求BPC度数的大小和正方形ABCD的边长【思路分析】首先仔细阅读材料,问题中小明的做法总结起来就是通过旋转固定的角度将已知条件放在同一个(组)图形中进行研究.旋转60度以后BP就成了BP,PC成了PA,借助等量关系BP=PP,于是APP就可以计算了.至于说为什么是60,则完全是因为大图形是等边三角形,需要用60度去构造另一个等边三角形.看完这个,再看所求的问题,几乎是一个一模一样的问题,只不过大图形由三角形变成了正方形.那么根据题中所给的思路,很自然就会想到将BPC旋转90度看看行不行.旋转90度之后,成功将PC挪了出来,于是很自然做AP延长线,构造出一个直角三角形来,于是问题得解.说实话如果完全不看材料,在正方形内做辅助线,当成一道普通的线段角计算问题也是可以算的.但是借助材料中已经给出的旋转方法做这道题会非常简单快捷.大家可以从本题中体会一下领会材料分析方法的重要性所在.【解析】(1)如图,将BPC绕点B逆时针旋转90,得BPA,则BPCBPAAP=PC=1,BP=BP=连结P P,在RtBPP中, BP=BP=,PBP=90, P P=2,BPP=45 在APP中, AP=1,P P=2,AP=, ,即AP 2 + PP 2 = AP2 APP是直角三角形,即A P P=90 APB=135 BPC=APB=135 (2)过点B作BEAP 交AP 的延长线于点E EP B=45. EP=BE=1. AE=2. 在RtABE中,由勾股定理,得AB= BPC=135,正方形边长为【例2】20_,大兴,一模若是关于的一元二次方程的两个根,则方程的两个根和系数有如下关系:. 我们把它们称为根与系数关系定理. 如果设二次函数的图象与_轴的两个交点为.利用根与系数关系定理我们又可以得到A、B两个交点间的距离为:请你参考以上定理和结论,解答下列问题:设二次函数的图象与_轴的两个交点为,抛物线的顶点为,显然为等腰三角形.(1)当为等腰直角三角形时,求(2)当为等边三角形时, .(3)设抛物线与轴的两个交点为、,顶点为,且,试问如何平移此抛物线,才能使?【思路分析】本题也是较为常见的类型,即先给出一个定理或结论,然后利用它们去解决一些问题.题干中给出抛物线与_轴的两交点之间的距离和表达式系数的关系,那么第一问要求取何值时ABC为等腰直角三角形.于是我们可以想到直角三角形的性质就是斜边中线等于斜边长的一半.斜边中线就是顶点的纵坐标,而斜边恰好就是两交点的距离.于是将作为一个整体,列出方程求解.第二问也是一样,把握等边三角形底边与中线的比例关系即可.第三问则可以直接利用第一问求得的值求出K,然后设出平移后的解析式,使其满足第二问的结果即可.注意左右平移是不会改变度数的,只需上下即可.【解析】 解:当为等腰直角三角形时,过作,垂足为,则 抛物线与轴有两个交点,(不要忘记这一步的论证)又, , (看成一个整体) 当为等边三角形时, ,即, 因为向左或向右平移时,的度数不变,所有只需要将抛物线向上或向下平移使,然后向左或向右平移任意个单位即可设向上或向下平移后的抛物线解析式为:,平移后,抛物线向下平移个单位后,向左或向右平移任意个单位都能使的度数由变为 【例3】20_,房山,一模阅读下列材料:小明遇到一个问题:如图1,正方形中,、分别是、和边上靠近、的等分点,连结、,形成四边形求四边形与正方形的面积比(用含的代数式表示)小明的做法是:先取,如图2,将绕点顺时针旋转至,再将绕点逆时针旋转至,得到个小正方形,所以四边形与正方形的面积比是;然后取,如图3,将绕点顺时针旋转至,再将绕点逆时针旋转至,得到个小正方形,所以四边形与正方形的面积比是,即;请你参考小明的做法,解决下列问题:(1)在图4中探究时四边形与正方形的面积比(在图4上画图并直接写出结果);(2)图5是矩形纸片剪去一个小矩形后的示意图,请你将它剪成三块后再拼成正方形(在图5中画出并指明拼接后的正方形)【思路分析】本题属于典型的那种花10分钟读懂材料画1分钟就可以做出来题的类型.材料给出的方法相当精妙,考生只要认真看过去并且理解透这个思路,那么不光是这道题可以做,以后碰见类似的题目都可以用这种方法.材料中所给方法就是将周边的四个三角形其中的两个旋转90,将三角形放在矩形当中去讨论面积.事实上无论是几等分点,所构造出来的四个小三角形AMD,ABN,BPC,CQD都是全等的,并且都是90度,那么他们旋转以后所对应的就是两个矩形,如图三中的BNPC和CMDQ.而矩形的面积恰好和中间正方形的面积有联系(想想看,是怎样用N等分点去证明面积比例的)于是顺理成章当N等于4的时候,去构造一个类似的网格,第一问就出来了.至于第二问和裁剪问题沾点边,完全就是这个技巧方法的逆向思考,重点就在于找出这个多边形是由哪几部分构成.于是按下图,连接BC,截外接矩形为两个全等的直角三角形,然后旋转即可.说白了,这种带网格的裁剪题,其实最关键的地方就在于网格全是平行线,利用平行线截线段的比例性质去找寻答案.【解析】 - 四边形与正方形的 拼接后的正方形是正方形面积比是 【例4】20_,海淀,一模阅读:如图1,在和中,, ,、 四点都在直线上,点与点重合.连接、,我们可以借助于和的大小关系证明不等式:().证明过程如下: ,.即. .解决下列问题:(1)现将沿直线向右平移,设,且.如图2,当时, .利用此图,仿照上述方法,证明不等式:().(2)用四个与全等的直角三角形纸板进行拼接,也能够借助图形证明上述不等式.请你画出一个示意图,并简要说明理由.【思路分析】本题是均值不等式的一种几何证明方法.材料中的思路就是利用两个共底三角形的面积来构建不等式,利用来证明.其中需要把握的几个点就是(b-a)是什么,以及如何通过(b-a)来造出.首先看第一问说要平移DEF,在平移过程中,DE的长度始终不变,EF垂直于M的关系也始终不变.那么此时(b-a)代表什么?自然就是BD和ED之和了.于是看出K值.接下来就是找那两个可以共底的三角形,由于材料所给提示,我们自然想到用BD来做这个底,而高自然就是AB和EF.于是连接AD,ABD和BDF的面积就可以引出结果了.第二问答案不唯一,总之就是先调整出(b-a)可以用什么来表达,然后去找b和a分别和这个(b-a)的关系,然后用面积来表达出的式子就可以了,大家可以继这个思路多想想.【解析】(1) 证明:连接、.可得. ,. , ,即 . . . (2) 延长BA、FE交于点I. , ,即 . . . 四个直角三角形的面积和,大正方形的面积. , . . 【例5】20_,昌平,一模.阅读下列材料:将图1的平行四边形用一定方法可分割成面积相等的八个四边形,如图2,再将图2中的八个四边形适当组合拼成两个面积相等且不全等的平行四边形.(要求:无缝隙且不重叠)请你参考以上做法解决以下问题:(1)将图4的平行四边形分割成面积相等的八个三角形;(2)将图5的平行四边形用不同于(1)的分割方案,分割成面积相等的八个三角形,再将这八个三角形适当组合拼成两个面积相等且不全等的平行四边形,类比图2,图3,用数字1至8标明. 【思路分析】这种拼接裁剪题目往往都是结合在阅读理解题中考察,结合网格,对考生的发散思维要求较强.本题材料中将平行四边形裁减成8份然后重新组成两个平行四边形.要保证平行就需
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 婴儿洗澡卡活动方案策划(3篇)
- 实体1元活动策划方案(3篇)
- 辽宁专业活动策划执行方案(3篇)
- 国企物业春节活动方案策划(3篇)
- 北京市昌平区2024-2025学年八年级下学期第一次月考英语考点及答案
- 心动客服面试题目及答案
- 物流运输效率提升优化方案设计模板
- 青春不是生命的终点:议论文思维训练教案
- 宠物临时寄养合同
- 营销活动策划方案模板与评估标准
- 2025年辽宁省地质勘探矿业集团有限责任公司校园招聘笔试备考题库带答案详解
- 初中英语新课程标准测试试题及答案3套
- 计数型MSA分析表格
- 旅游区奖惩制度管理办法
- 儿童生长发育监测课件
- 页岩气开发地震监测技术要求DB50-T 1234-2022
- 实验室病原微生物危害 评估报告
- 科技项目申报专员系列培训(技术攻关项目)
- 品质异常处罚细则及奖罚制度
- 幼儿舞蹈《蜗牛》舞蹈教案
- 生物药剂学:第七章 非线性药物动力学
评论
0/150
提交评论