




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2 3离散型随机变量的均值与方差 2 3 1离散型随机变量的均值 1 理解离散型随机变量的均值的意义 会根据离散型随机变量的分布列求出均值 2 掌握离散型随机变量的均值的性质 掌握两点分布 二项分布的均值 3 会利用离散型随机变量的均值反映离散型随机变量的取值水平解决一些相关的实际问题 1 2 1 离散型随机变量的均值 1 一般地 若离散型随机变量x的分布列为则称e x x1p1 x2p2 xipi xnpn为随机变量x的均值或数学期望 2 离散型随机变量x的均值或数学期望反映了离散型随机变量取值的平均水平 1 2 知识拓展1 定义中给出了求离散型随机变量均值的方法 我们只研究有限个随机变量的均值的情况 2 随机变量的均值e x 是一个数值 是随机变量x本身所固有的一个数字特征 它不具有随机性 反映的是随机变量取值的平均水平 3 若y ax b 其中a b为常数 则e y e ax b ae x b 因为e ax b ae x b 所以随机变量x的线性函数y ax b的均值等于随机变量x的均值的线性函数 此式有如下几种特殊形式 1 当b 0时 e ax ae x 此式表明常量与随机变量乘积的均值等于这个常量与随机变量的均值的乘积 2 当a 1时 e x b e x b 此式表明随机变量与常量和的均值等于随机变量的均值与这个常量的和 3 当a 0时 e b b 此式表明常量的均值等于这个常量 1 2 答案 d 做一做1 2 设一随机变量 的均值为e 3 则e 10 2 a 3b 5c 30d 32解析 e 10 2 10e 2 32 答案 d 1 2 2 两点分布 二项分布的均值 1 若随机变量x服从两点分布 则e x p 2 若x b n p 则e x np 知识拓展若离散型随机变量x服从参数为n m n n n m n n m n n 的超几何分布 则 做一做2 一名射手每次射击中靶的概率均为0 8 则他独立射击3次中靶次数x的均值为 a 0 8b 0 83c 3d 2 4解析 射手独立射击3次中靶次数x服从二项分布 即x b 3 0 8 则e x 3 0 8 2 4 答案 d 1 2 1 求随机变量 的均值的一般步骤是什么剖析 1 写出 的分布列 在求 取每一个值的概率时 要联系概率的有关知识 如古典概型的概率 相互独立事件的概率等 2 由分布列求e 3 如果随机变量是线性关系或服从两点分布 二项分布 根据它们的均值公式计算 1 2 示例 将两封信随机投入a b c三个空邮箱中 求a邮箱的信件数 的分布列及均值 分析 1 确定 的所有可能取值 2 计算出 取每一个值时的概率 3 列出分布列 4 利用e 的公式计算e 1 2 2 随机变量的均值与样本平均值有怎样的关系剖析随机变量的均值与样本的平均值的关系 随机变量的均值是一个常数 它不依赖于样本的抽取 而样本平均值是一个随机变量 它随样本抽取的不同而变化 对于简单随机抽样 随着样本容量的增加 样本平均值越来越接近于总体的均值 题型一 题型二 题型三 题型四 例1 根据历次比赛和训练记录 甲 乙两名射手在同样的条件下进行射击 成绩的分布列如下 试比较甲 乙两名射手射击水平的高低并预测两名射手比赛的结果 题型一 题型二 题型三 题型四 解 设甲 乙两射手射击一次所得的环数分别为x1 x2 则e x1 8 0 3 9 0 1 10 0 6 9 3 e x2 8 0 2 9 0 5 10 0 3 9 1 这就是说射手甲射击所得环数的数学期望比射手乙射击所得环数的数学期望高 从而说明甲的平均射击水平比乙的稍高一点 如果两人进行比赛 甲赢的可能性较大 题型一 题型二 题型三 题型四 变式训练1 袋中有4个红球 3个黑球 今从袋中随机取出4个球 设取到一个红球记2分 取到一个黑球记1分 试求得分 的均值 解 取出4个球 颜色分布情况是 4红得8分 3红1黑得7分 2红2黑得6分 1红3黑得5分 相应的概率为 题型一 题型二 题型三 题型四 例2 某市出租车的起步价为6元 行驶路程不超出3km时 车费为6元 若行驶路程超出3km 则按每超出1km收费3元计费 不足1km按1km计算 设出租车行车路程x是一个随机变量 司机所收车费为y 单位 元 则y 3x 3 已知出租车在一天内行车路程可能取的值有 单位 km 200 220 240 260 280 300 它们出现的概率分别为0 12 0 18 0 20 0 20 0 18 0 12 求出租车行驶一天所收车费的均值 分析先求出e x 再利用e y e 3x 3 求e y 解 e y e 3x 3 3e x 3 3 200 0 12 220 0 18 240 0 20 260 0 20 280 0 18 300 0 12 3 3 250 3 747 反思本题利用公式e ax b ae x b 将求e y 的问题转化为求e x 的问题 避免了求y的分布列的麻烦 简化了运算 题型一 题型二 题型三 题型四 变式训练2 已知随机变量x的分布列为 1 试求e x 2 若y 2x 3 求e y 题型一 题型二 题型三 题型四 例3 某运动员的投篮命中率为p 0 6 1 求投篮一次时命中次数 的均值 2 求重复投篮5次时 命中次数 的均值 分析第 1 问中 只有0 1两个结果 服从两点分布 第 2 问中 服从二项分布 题型一 题型二 题型三 题型四 解 1 投篮一次 命中次数 的分布列为 则e p 0 6 2 由题意 重复5次投篮 命中的次数 服从二项分布 即 b 5 0 6 则e np 5 0 6 3 反思对服从二项分布或两点分布的随机变量求均值 只要利用相应公式即可 但要准确判断问题中的变量是否服从二项分布 两点分布 题型一 题型二 题型三 题型四 答案 2 题型一 题型二 题型三 题型四 易错点 分不清试验是不是独立重复试验 例4 某电视台举行电视奥运知识大奖赛 比赛分初赛和决赛两部分 为了增加节目的趣味性 初赛采用选手选一题答一题的方式进行 每位选手最多有5次选题答题的机会 选手累计答对3题或答错3题即终止其初赛的比赛 答对3题者直接进入决赛 答错3题者则被淘汰 已知选手甲答题的正确率为 1 求选手甲可进入决赛的概率 2 设选手甲在初赛中答题的个数为 试写出 的分布列 并求 的均值 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 题型一 题型二 题型三 题型四 错因分析 1 甲答3题进入决赛指的是甲全部答对该3题 甲答4题进入决赛指的是前3题中答对2道题 答错1道题 第4题答对 只有前3次答题事件满足独立重复试验 同理答5题进入决赛指的是前4题答对2道题 答错2道题 第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学前教育学原理期末试卷及答案
- 《计量学基础》试卷及答案
- 2025精麻药品培训考试试题库及参考答案
- 虚拟交互式可视化-洞察与解读
- 2025年事业单位招聘考试综合类结构化面试真题模拟试卷(工商类)
- 2025年事业单位招聘考试综合类职业能力倾向测验真题模拟试卷(长春)
- 2025年事业单位招聘考试面试真题模拟试卷权威解读集
- 2025年事业单位招聘考试综合类职业能力倾向测验真题模拟试卷(昆明)
- 2025年事业单位招聘面试真题模拟试卷:计算机科学与信息技术
- 递归诊断模型-洞察与解读
- 采购业务审计培训
- 2025-2026学年冀美版(2024)小学美术二年级上册(全册)教学设计(附目录P284)
- 服装色彩构成课件
- 化工仪表检修与维护课件
- 2025年华为软件开发工程师招聘面试题库及答案解析
- 程序化广告课件
- 电工基础课件
- 四川省石渠县2025年上半年公开招聘辅警试题含答案分析
- 真菌生物膜毒力因子-洞察及研究
- 基孔肯雅热危害及预防课件
- 副校长在任职宣布会上的表态发言材料
评论
0/150
提交评论